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1 

Chapter 1 

INTRODUCTION 

 

Historical Background  

During the past 25 years, electrospray ionization mass spectrometry (ESI-MS) has 

become an important analytical tool for inorganic and biological research.  Long before 

electrospray ionization was coupled with mass spectrometry, fundamental studies were 

conducted on the electrospray process.  The first studies were in 1917 when Zeleny studied 

the electrospray process [1].  Zeleny was the first to observe the electrohydrodynamic 

pulsation of a charged liquid surface.  He concluded that the spray plume was a result of the 

solvent, high voltage, and pressure of the liquid at the tip of the tube.  Zeleny also observed 

and described different spraying modes such as the dripping, spindle, Taylor cone [2], and 

multijet modes.  In 1994, Cloupeau and Prunet-Foch provided a detailed description of all of 

the various spraying modes, including the modes first observed by Zeleny [3]. 

 In 1968, Dole et al. used electrospray ionization to determine the molecular weight of 

a dilute polymer solution [4].  This is the first article where electrospray ionization was used 

for mass analysis.  In lieu of a mass spectrometer, a Faraday cage was used to detect the ionic 

current and a mass was deduced from this measurement.  Polystyrene macroions of 51,000 

and 411,000 amu were detected.  In a second paper, further measurements with polymer 

solutions were conducted [5]. 

 The next significant paper using electrospray ionization wasn’t published until 1984, 

when Yamashita and Fenn were the first to couple an electrospray source to a mass 

spectrometer [6, 7].  For this achievement, Fenn shared the Nobel Prize in Chemistry in 
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2002.  At approximately the same time as Yamashita and Fenn, Aleksandrov et. al. 

investigated inorganic ions by ESI-MS [8].  This article demonstrated that ESI-MS could be 

a useful tool in the fields of inorganic and organometallic chemistry. 

 In 1994, Wilm and Mann developed a micro electrospray source that is now called 

nanospray or nanoelectrospray [9, 10].  Nanospray sources are typically made out of silica 

glass rods which have one end pulled down to an inner diameter of 1 to 20 μm.  Nanospray 

sources typically have flow rates in the 10-500 nL/min range, don’t require a sheath gas, and 

can easily spray 100 % water solutions.  The signal obtained using a nanospray source is 

equivalent or greater than that of a traditional ESI source because the ionization efficiency is 

higher due to the production of smaller droplets at the tip.  The main advantage is that very 

small sample volumes, as small as 0.5 μL, are used.  This is advantageous because samples, 

especially biological samples, are often expensive to buy or synthesize. 

 

Applications of ESI-MS 

 Biological Applications 

In the late 1980’s, the biological era of ESI-MS began.  Fenn et al. demonstrated that 

the soft ionization of ESI allowed for intact proteins to be transferred into the gas phase [11].  

Since mass spectrometers actually measure m/z, the multiply charged peaks generated by ESI 

of biomolecules can be analyzed by common mass analyzers such as quadrupoles.  For 

example, equine heart myoglobin has a mass of 16,952 Da.  If this protein were only singly 

charged, this m/z would be much too high for a quadrupole mass analyzer, which has an 

upper m/z limit of 3000 to 4000 m/z.  When equine heart myoglobin is sprayed and mass 

analyzed, there is a charge distribution present with peaks ranging from +26 to +9.  On the 
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m/z scale, these peaks are present between, m/z 652 and 1883, which is within the useful 

analytical range of all mass analyzers.  

For the first time, ESI-MS also provided accurate mass measurements for large 

biomolecules.  Each multiply charged peak present in a mass spectrum represents an 

independent measurement of the ion’s mass.  For example, a 13+ ion of equine heart 

myoglobin has a mass of 1305.0 m/z.  Multiply the 1305.0 by the 13 charges and subtract off 

the 13 protons that gave myoglobin the 13+ charge; the mass is 16,952 Da.  When the same 

calculation is done on the 14+ ion at m/z 1211.9, a mass of 16,952.6 Da is obtained.  The 

measured mass from each charge state is averaged to provide an accurate mass of the ion.  

The measured values typically have a mass accuracy within 0.01% of the actual values.  At 

the time of this discovery, the best mass accuracy for large biomolecules via other methods 

was 5 to 10%. 

With biological molecules, the molecular weight is often not enough information for 

an accurate identification.  Two proteins may have the same 50 residues, but a completely 

different order.  On the m/z scale, the two proteins would have the same peak, but they could 

have completely different biological functions.  Protein sequencing using ESI-MS provides 

structure and sequence information that allows for accurate protein identification.  ESI-MS is 

capable of performing both “bottom-up”, and “top-down” sequencing.  In bottom-up 

sequencing, the proteins are first separated with a 2D gel separation.  Next, there is either an 

in-gel digest or a solution-phase digest, which cleaves the protein at specific residues, 

depending on the enzyme used.  Common digest enzymes are trypsin, Lys-C, and 

chymotrypsin.  After the digest, high pressure liquid chromatography (HPLC) is often 

performed to clean up the sample and to achieve another level of separation.  Two peaks may 
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have the same m/z in the mass spectrum, but their LC retention times may differ.  This 

enables an accurate identification of the two peptide pieces.  After the LC separation, the 

samples are introduced into the ESI-MS.  This is commonly done on-line, but the LC 

fractions can also be collected and analyzed later.  Each individual peptide peak in the mass 

spectrum is subjected to collision induced dissociation (CID) to identify the residues and 

their locations within the peptide.  Since the digest enzymes cleave at specific locations, the 

order of the peptide pieces can also be reconstructed. 

Database searches drastically decrease the data interpretation time.  The mass spectral 

peaks of the peptides and their corresponding CID spectral peaks can be entered into a 

database.  The database uses the spectral information to find the residue sequences and 

sequence order of the peptides.  The database can then piece together the peptide fragments 

and provide the original protein. 

There are some limitations to the bottom-up sequencing method.  If a sample contains 

multiple unknown proteins, there will be many peptide peaks because each protein produces 

multiple peptide pieces when it is digested.  Since peptides often carry more than one charge, 

there are multiple peaks present for each peptide in the mass spectrum.  This often 

complicates the mass spectrum and can lead to spectral overlap between peaks.  CID of all 

the peptides pieces is time consuming and uses more sample.  This is a disadvantage because 

sample volumes are often only a few hundred microliters.  Another limitation to bottom-up 

sequencing is that the protein digest enzymes don’t have 100% efficiency, so the appropriate 

peptide fragments are not always seen.   

Top-down protein sequencing was developed to address some of the drawbacks of the 

bottom-up approach and to make the sequencing process faster.  The initial work for the top-
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down approach was done by McLafferty [12].  In top-down sequencing, the intact protein is 

mass analyzed, followed by CID.  A database search is performed on the CID spectrum to get 

the amino acid sequence for the protein.  This method is much faster and requires little 

sample preparation.  Since the whole protein is subjected to CID, post-translational 

modifications can be identified and their locations determined.  These are huge advantages 

relative to the bottom-up approach. 

One of the main drawbacks to the top-down approach is that it requires 

instrumentation with high mass resolution, accuracy, and the ability to fragment large ions.  

Until recently, these requirements limited the top-down sequencing method to expensive FT-

ICR mass analyzers.  Recently, the orbitrap mass analyzer has shown promise as an 

alternative mass analyzer capable of top-down sequencing [13].  Also, current research is 

being done to use ion traps for top-down sequencing [14].  Other disadvantages include data 

interpretation/library searching limitations and charge state effects within the mass analyzer. 

 

Cluster Ions 

 Clusters or cluster ions are ions that are composed of a group of individual molecules 

or ions.  The most well known cluster is the buckminsterfullerene or “Bucky Ball” [15].  This 

cluster resembles a soccer ball and has a formula of C60.  This cluster was made via laser 

ablation of graphite.  Cluster ions with different elements are commonly made by ablating 

two solids and having the resulting plumes interact. 

 ESI-MS has also proven to be very useful in cluster ion research.  The soft ionization 

of ESI-MS allows ions to interact within the shrinking droplets of the ESI plume.  If the 
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interactions between the individual ions are strong enough, the cluster ion will traverse the 

mass spectrometer and be detected.   

 Cluster ions have also been very useful for ESI-MS research.  Cluster ions like NaxIy
- 

have been used to calibrate the m/z scale in ESI-MS.  These clusters can span a range from 

m/z 150 to 4,000 or higher, which covers the m/z range of most mass analyzers [16, 17].  

Cluster ions have also been used to gain insight into the ionization process of ESI [18-20]. 

 

Dissertation Objective and Organization 

 This dissertation is organized into chapters and focuses on novel applications of ESI-

MS on cluster ions and toxic metals in biology.  Chapter 2 is a manuscript published in the 

Journal of the American Society for Mass Spectrometry.  This manuscript uses negative ion 

mode ESI-MS to examine the clusters of protonated amine salt solutions with chloride 

counter ions.  CID measurements and CID threshold measurements were performed to 

provide insight into ion structure and bond strengths.  Chapters 3 and 4 are manuscripts, 

ready to be submitted to the Journal of the American Society for Mass Spectrometry for 

publication.  In Chapter 3 highly negatively charged alkali metal sulfated cluster ions are 

examined using ESI-MS.  Ions with charges up to 7- and ions as large as Na131(SO4)69
- were 

present in the mass spectra.  Two different ESI-MS interface geometries, source conditions, 

and solvent ratios were examined to determine their effect on the cluster ion distributions 

present in the mass spectra.  Chapter 4 utilizes negative ion mode ESI-MS to study mixed 

metal cluster ions.  Metal clusters of MxClz
- (M = Ce3+, Co2+, Zn2+ or Ho3+) or CexMyClz

- (M 

= Co2+, Zn2+ or Ho3+) were present in the mass spectra.  Heated capillary temperature, source 
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conditions and solvent ratios were examined to determine their effect on the mixed metal 

cluster ions present and their distribution in the mass spectra. 

 In Chapter 5, the interaction of toxic metals with the [Gln11]-amyloid β-protein 

fragment (1-16) was studied by ESI-MS.  This chapter looks at the binding location of Cd, Pb 

and Hg to the amyloid protein fragment (1-16).  Competition studies found that Cd and Pb 

have a higher affinity for the binding site than Zn.  Cd and Pb were also able to displace 

bound Zn, but an excess of Zn did not remove the bound toxic metals.  This manuscript has 

been submitted to the Journal of Biological Inorganic Chemistry.  General conclusions and 

future research directions are summarized in Chapter 6. 
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CHAPTER 2.  NEGATIVE ION MODE ELECTROSPRAY IONIZATION MASS 

SPECTROMETRY STUDY OF AMMONIUM-COUNTER ION CLUSTERS 

 

A paper published in the Journal of the American Society for Mass Spectrometry 

N. B. Lentz and R. S. Houk 

 

Abstract 

 Electrospray ionization mass spectrometry (ESI-MS) was used to examine clusters of 

protonated amine salt solutions with chloride counter ions in the negative ion mode.  These 

ions have the general formula [(RNH3)xClx+1]-.  Primary amines generate a wide cluster 

distribution with clusters up to 14 mers for methylamine hydrochloride clusters.  Secondary 

and quaternary amines only generate the monomer ion under identical conditions.  Collision 

induced dissociation (CID) of the cluster ions generates cluster ions of lower m/z with the 

next lower cluster being the most abundant.  The product ions from MeNH3Cl2
-, Me2NH2Cl2

- 

and   (MeNH3)2Cl3
- have low threshold appearance energies of 1.24 to 2.22 eV center-of-

mass frame.  Secondary amine monomer ions have lower threshold CID energies than 

primary amine monomer ions.  The amine threshold CID energy decreases as the carbon 

chain length increases.  As an electrospray solvent, isopropyl alcohol (IPA) promotes the 

formation of counter ions and clustering. 

 

Introduction 

ESI-MS is a rapid and sensitive tool for the determination of molecules in solution 

[1].  Usually, the electrospray interface attempts to desolvate and remove all counter ion 
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complexes and clusters before the ions enter the mass spectrometer.  Cluster ions usually 

lower analyte signals, complicate mass spectra, and hinder quantification.  However, there 

are times when cluster ions are beneficial in ESI-MS.  They can be used to calibrate the m/z 

scale and to study ionization mechanisms and solvent effects on the ESI process [2-6].  

Cluster distributions for species such as NaxClx-1
+ exhibit “magic numbers” and are of 

interest in their own right [7, 8].  If a molecule is poorly ionized in electrospray, counter ions 

can be added to increase the ionization yield [9, 10].  The counter ions can also provide a net 

charge for a neutral molecule so that it can be detected in a mass spectrometer.  The counter 

ions change the ionization properties of the molecule by changing the charge state of the 

molecule.  If the ion originally has a net positive charge, the addition of counter ions will 

reduce the charge state of the ion or even convert it to the opposite polarity.  If the overall 

charge of the ion is changed from positive to negative, negative ion mode ESI must be used.  

Negative ion mode has the added benefit of fewer background ions in the mass spectrum. 

Clusters can also lock in the charge state of a given ion in solution.  Counter ions can 

interact with the ion of interest, and keep the ion in a specific charge state.  Halides are 

commonly used due to their charge affinity and ability to coordinate around an ion [11, 12].  

This charge state can be preserved by adjusting the ionization conditions at the electrospray 

interface. 

In order to observe cluster ions, softer ion extraction conditions are sometimes 

required.  This often means a lower capillary temperature and/or lower extraction voltages in 

the atmospheric sampling region [8].   

Previous studies in our group have shown that anions like nitrate can stabilize the 

oxidation state of highly charged, reactive metal ions in solution [13, 14].  In this paper, 
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complex and cluster ions from various amine salts are investigated by ESI-MS.  CID spectra 

show the fragmentation pattern of the cluster ions.  Threshold dissociation energies are 

determined for primary and secondary monomer ions as well as for a methylamine cluster 

ion.  The threshold reactions provide valuable information regarding differences in cluster 

ion formation and the strength of the interaction between the cations and anions comprising 

the cluster. 

 

Experimental 

Samples and Sample Preparation 

The amine salts and IPA were purchased from Sigma (St. Louis, MO) and used 

without further purification.  Table 1 shows the structures of the amine salts and the molecule 

abbreviations used in this paper.  The amine salts were dissolved in a 99% isopropyl alcohol 

(IPA) 1% deionized water (Millipore 18.2 MΩ) solution.  The final concentration of the 

amine salt was 1 mM.  Only a stoichiometric amount of chloride was present.  No extra 

chloride anions were added to the solution. 

 

ESI-MS (Figures 1, 2, 5 and 6) 

A triple quadrupole (QoQ) MS (TSQ-7000, Thermo Finnigan, San Jose, CA) with an 

on-axis electrospray source, was used.  Samples were infused continuously at 5 μL/min with 

a syringe pump (Model 22, Harvard Apparatus, Southnatic, MA).  Nitrogen (80 psi) and 

high-purity argon were used as the nebulizing gas and collision gas, respectively.  The 

electrospray needle voltage was set to -2.5 kV, and the heated capillary was kept at 250 oC,   
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-39.9 V.  The ring electrode and first octopole voltage were -37.4 and +3.0 V, respectively.  

The skimmer is at ground on this instrument.  

  

CID Spectra (Figures 3 and 4)  

The collision gas pressure was 0.13 Pa for these experiments.  The collision energies 

(skimmer to collision cell potential offset) were 10 to 21 eV (lab frame).  The resolution of 

the first quadrupole was reduced to obtain higher signals in CID experiments.    

 

CID Threshold Measurements (Figures 7 and 8)  

For threshold experiments, the collision gas pressure was reduced to 0.0267 Pa.  At 

this pressure, the mean free path was about 25 cm, which was longer than the octopole (18.2 

cm).  Thus, most ions passing through the collision cell experienced only one collision.  The 

collision energy was increased from 2.5 to 26.5 eV (lab frame) in increments of 0.2, 0.3 or 

0.5 eV.  Each ion of interest was monitored for 1 second in selected reaction monitoring 

(SRM) mode.  Data were collected for 3 to 4 minutes at each collision energy and averaged.  

The signal intensities were converted to collision cross sections, and the collision 

energy was converted to the center-of-mass frame.  These conversions allow for accurate 

comparisons of the threshold energies for different ions [15-17].  Armentrout provides 

detailed discussions on how to convert intensities to collision cross sections, and why the 

center-of-mass frame must be used for threshold energy data [16].  The same methods were 

used in our previous paper on metal nitrate complex ions [13]. 

The instrument used for this experiment is not intended for accurate thermochemical 

measurements.  For example, the kinetic energy spread of the ion beam is greater than 
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desirable.  Most analytical mass spectrometers are designed for maximum sensitivity, not 

accurate thermochemical measurements.  However, approximate thresholds can be measured 

and used for general or qualitative purposes.  In a previous paper, the relationship between 

the measured and true collision energy was evaluated by using the reaction listed below: 

NO3
-  NO2

- + O    (1) 

The instrument was found to under-estimate the collision energy by 0.76 eV [13].  

We performed an additional threshold measurement to confirm the ion beam kinetic 

energy offset previously found [13].  Sodium dichloride ions (NaCl2
-) were chosen because 

of their similarity to the amine chloride ions investigated in this study.  The NaCl2
- ion is 

comprised of only ionic interactions, like the amine clusters.  NO3
- is held together by 

covalent bonds, and the energy offset could be different for an ion comprised of only ionic 

interactions.  The reaction  

NaCl2
-  NaCl + Cl-     (2) 

was used to determine the kinetic energy offset of the ion beam.  Cl- is the only measurable 

ion produced from this fragmentation reaction.  The results from the threshold measurement 

for the dissociation of NaCl2
- gave a threshold energy of 1.65 eV (center of mass, data not 

shown).  This measured value is 0.63 eV lower than the computational value of 2.277 eV 

[18].  This offset value is similar to the 0.76 eV offset obtained from the previous NO3
- 

threshold measurement [13] and confirms that the offset is not strongly dependent on the ion 

selected.  We are more confident in the experimentally-measured thermochemical data used 

previously, so 0.76 eV has been added to all the voltage thresholds reported below to 

generate “corrected” thresholds.  Even if this offset is inaccurate, it is the same for all ions, 

and trends in the thresholds can still be compared.              
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Results and Discussion 

MS and CID of Primary Amines 

A mass spectrum of a methylamine hydrochloride solution is shown in Figure 1.  As 

m/z increases the cluster ion abundances decay in an exponential fashion, without any 

obvious “magic numbers,” unlike those observed for alkali metal halide clusters [2, 7, 8].  

Three different cluster patterns are evident.  The first is of the form [(MeNH3)xClx+1]-.  This 

pattern is the most intense, and cluster ions can be seen up to x = 14.   

The second cluster pattern includes one contaminant sodium ion and is of the form 

[(MeNH3)yNaCly+2]-.  The third pattern is similar to the second, except a proton replaces the 

sodium ion [(MeNH3)zHClz+2]-.  The [(MeNH3)yNaCly+2]- pattern is more prevalent, and is 

seen for larger clusters, than the [(MeNH3)zHClz+2]- pattern.  These patterns are also present 

in ethylamine (not shown) and propylamine, Figure 2.  There are few or no cluster ions with 

more than one Na+ or H+ ion, unlike the numerous [(MeNH3)xClx+1]-  ions.  As seen in 

Figures 1 and 2, larger clusters become less abundant as the size of the alkyl group increases.   

The inset to Figure 2 compares the calculated and measured isotope distributions for 

(EtNH3)3Cl4
-.  In general, the observed isotope peaks agree with the calculated values to 

within 2% for all the ions identified in this study.  When the mass range is set to include ions 

down to m/z 30, Cl- ions are seen.  This observation suggests that Cl- ions are not the limiting 

factor in determining cluster ion formation.   

A typical CID product ion spectrum is shown for [(PrNH3)3Cl4]- in Figure 3.  A 

collision cell offset voltage of 21 eV was used to fragment the parent ion.  The parent cluster 

ion fragments into smaller cluster ions.  The next smaller cluster ion is the most intense 

product ion.  Despite the low resolution of the first quadrupole, it does not transmit the 
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various isotopomers equally, especially for large clusters with multiple Cl atoms.  Therefore, 

the product ions in Figures 3 and 4 often do not have the expected natural isotope 

distributions.    

The observed CID products from Figure 3 are as follows: 

 

[(PrNH3)3Cl4]-  [(PrNH3)2Cl3]- + PrNH3Cl (or PrNH2 + HCl) 

                         [(PrNH3)HCl3]- + PrNH3Cl + PrNH2

                         PrNH3Cl2
- + 2PrNH3Cl 

 

The species in italics are the inferred neutral products from the CID reactions.  They cannot 

be observed due to their lack of overall charge.  The reactions shown above are not meant to 

imply an actual mechanism, i.e., unimolecular decay of the excited parent ion.  Stepwise 

reactions are also likely, especially because these spectra are not measured under single-

collision conditions.   

It is interesting to note the lack of Cl- fragment ions in Figure 3.  Cl- fragment ions are 

not seen when clusters larger than the monomer are fragmented.  This means that not all of 

the Cl-/NH3
+ ionic bonds are broken during CID.   

Figure 4 shows a CID spectrum of the MeNH3Cl2
- monomer taken with a collision 

energy of 15 eV (lab); HCl2
- and Cl- are the only product ions present in the spectrum.  

MeNH2 leaves as a neutral fragment and is not seen in the mass spectrum.  It is clear that the 

monomer ions behave differently than the larger cluster ions since the monomers are the only 

ions that yield Cl- fragment ions on CID. 
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MS of Secondary and Quaternary Amines 

Under the same ESI conditions, higher order amines do not generate a wide cluster 

distribution like the primary amines.  The mass spectrum for diethylamine hydrochloride is 

given in Figure 5.  The ions at m/z 71 and m/z 95 are HCl2
- and the chloride adduct of IPA,  

respectively.  The only ion arising from the diethylamine is the monomer ion Et2NH2Cl2
- at 

m/z 144.  Chloride solutions of dimethylamine and quarternary amines also yield only 

monomer peaks (data not shown).  

Other halide anions yield similar spectra, as shown for tetrabutylammonium iodide in 

Figure 6.  Again, some free I- is observed, even though the solution contains 

stoichiometrically equivalent amounts of the tetrabutylammonium and iodide ions.  Thus, the 

anion concentration is not the limiting factor in cluster ion formation for the secondary and 

higher amines, as noted above for the primary amines.   

Our previous studies of counter anion complexes from methanol-water solutions used 

a large excess of nitrate to drive complex ion formation [13].  In our experience, large 

clusters are much more prevalent at lower anion concentrations in the isopropanol solvent 

used in the present work.   

Figure 6 has an interesting peak at m/z 381, which is ascribed to 127I3
-.  Apparently, 

some of the I- is oxidized to I2 and/or I3
-.  The high negative voltage applied to the ESI needle 

would drive reduction, not oxidation, so the I3
- is not made by electrolysis at the needle.     

 

CID Threshold Measurements 

In order to investigate the interaction strength of the different amine clusters, 

threshold measurements were performed.  As mentioned earlier, the threshold results should 
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be considered merely as approximate values, partly because of uncertainty in the correction 

term of 0.76 eV added to all the measured voltages.  Nevertheless trends and general 

conclusions can be drawn from the measurements.     

The threshold energies for the monomer ions of different primary and secondary 

amine clusters were examined to see if the size or number of hydrocarbon chains affected the 

stability of the ion.  The threshold appearance energies for HCl2
- and Cl- from the monomer 

ions of methylamine (MeNH3Cl2
-), dimethylamine (Me2NH2Cl2

-) , and diethylamine 

(Et2NH2Cl2
-) were monitored under the same experimental conditions.  Figure 7 shows 

typical results for the threshold measurement for MeNH3Cl2
- at m/z 102.  The corrected 

threshold energies are 2.06 and 2.22 eV (center-of-mass) for HCl2
-, and Cl-, respectively.   

In the inset to Figure 7, the same experiment is performed with the methylamine 

monomer ion, but without any collision gas.  The cross section initially decreases, then levels 

off at a low value.  This observation confirms that the initial signal decrease is due to 

instrumental conditions, and is not related to the threshold measurement of the ion.  The 

initial decrease can be ignored, and the increase from the minimum is called the threshold 

energy.   

All the measured CID thresholds are compared in Table 2.  For CID of the 

Me2NH2Cl2
- monomer ion, measured threshold energies are 1.94 and 2.14 eV (CM) for 

formation of HCl2
- and Cl-, respectively.  These values are slightly lower than those for 

MeNH3Cl2
-.  The addition of the second methyl group decreases the threshold energy, which 

means that the ion is less stable and requires less energy to dissociate than the cluster of the 

analogous primary amine.  This trend is further supported by threshold measurements for 

Et2NH2Cl2
-, which produces HCl2

- and Cl- at 1.63 and 1.93 eV (CM, Table 2).  The monomer 
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ions with the larger alkyl groups and more alkyl groups are less stable based upon the lower 

threshold energies.  According to this pattern, larger cluster ions will have even lower 

threshold energies. 

In order to test this theory, a threshold measurement was performed on the 

methylamine dimer ion (MeNH3)2Cl3
-, m/z 169.  The products monitored are 

[(MeNH3)HCl3]-, MeNH3Cl2
-, and HCl2

- at m/z 138, 102, and 71, respectively.  Figure 8 

shows the threshold energies for all of the product ions of (MeNH3)2Cl3
-.  The corrected 

threshold energies for [(MeNH3)HCl3]-, MeNH3Cl2
-, and HCl2

- are very low:  1.47, 1.41, and 

1.24 eV (CM).  This dimer ion is larger and more complex than the monomer ions, so the 

dimer dissociates at even lower threshold energies.  The threshold energy for the production 

of HCl2
- from the dimer is much lower than the values recorded for the monomer ions.  Even 

though the hydrocarbon chain and saturation are the same, the dimer ion is less stable.   

The corrected threshold energies range from 1.24 to 2.22 eV (CM).  These values are 

reasonable for ions held together by electrostatic interactions.  According to Gutsev et al. 

[18], CID of NaCl2
- to Cl- takes 2.28 eV, similar to that found for the more stable ions 

studied in the present work.  Figures 7 and 8 show that the instrument can distinguish the 

CID threshold energies for the various ions, although there could be a systematic error in the 

measured values if the instrumental offset (see end of Experimental section) is incorrect.       

 

Conclusions 

Electrospray ionization mass spectrometry was used to evaluate the cluster ion 

formation capabilities of amine salts.  Primary amines form many clusters which decay off in 

an exponential fashion.  Secondary and higher order amines produce only intense monomer 
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peaks.  This is attributed to the steric hindrance of the additional carbon chains around the 

charged amine.  When activated by CID, the parent ion fragments into the next smaller 

clusters in the pattern with the next smaller cluster being the most intense.  The amine 

molecule leaves as a neutral fragment when CID is performed on the monomer ions.   

The threshold energies are low (1.2 to 2.2 eV), which is a further indication that 

counter ion complexation can stabilize fragile species and allow them to survive the ESI 

extraction process [13, 14].  The CID thresholds depend on several properties of the ionic 

clusters.  Larger alkyl groups decrease the dissociation energy.  Increasing the degree of 

substitution from primary to secondary amines also lowers the CID threshold energy of the 

ion. Increasing the degree of substitution from primary to secondary amines also lowers the 

CID threshold energy of the ion.  Perhaps the larger or more numerous carbon chains 

increase the distance between the opposing charges and thus weaken the electrostatic 

attraction.  Dimer ions also exhibit lower threshold CID energies than the monomer ions.  

Even though the threshold energies are low, the electrostatic forces keeping the ion together 

are strong enough for the molecule to survive the ion extraction process and traverse through 

the mass spectrometer, and allow the ion to be detected.  Currently, studies are underway to 

explore other interesting applications of counter ion complexes and cluster ions and their 

ability to provide new information regarding molecular interactions in ESI-MS. 
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Table 1.  Chemicals, formulas, and abbreviations. 
 
Compound name   Formula   Abbreviation 
 
Methylamine hydrochloride  CH3NH3

+Cl-   MeNH3Cl 

Ethylamine hydrochloride  CH3CH2NH3
+Cl-  Et NH3Cl 

Propylamine hydrochloride  CH3CH2CH2NH3
+Cl-  Pr NH3Cl 

Dimethylamine hydrochloride (CH3)2NH2
+Cl-  Me2NH2Cl 

Diethylamine hydrochloride  (CH3CH2)2NH2
+Cl-  Et2NH2Cl 

Tetraethylammonium chloride (CH3CH2)4N+Cl-  Et4NCl 

Tetrabutylammonium chloride (CH3CH2CH2CH2)4N+Cl- Bu4NCl 

Tetrabutylammonium iodide  (CH3CH2CH2CH2)4N+I- Bu4NI 
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Table 2.  Threshold appearance energies for CID product ions  
 
Precursor  Correcteda appearance energy (eV) of indicated product ion  
 
   HCl2

-  Cl-

 
MeNH3Cl2

-  2.06  2.22 
 
Me2NH2Cl2

-  1.94  2.14 
 
Et2NH2Cl2

-  1.63  1.93 
 
 
   HCl2

-  MeNH3Cl2
- (MeNH3)HCl3

-

 
(MeNH3)2Cl3

-  1.24  1.41  1.47 
 
 
a“Corrected” means the listed values are the measured thresholds plus the 0.76 eV 
instrumental offset.  See ref. 13 and Experimental section. 
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Figure 1.  Mass spectrum of 1 mM methylamine hydrochloride in 99 % IPA, 1% H2O.  The 

subscripts x, y and z indicate three different cluster patterns.  Clusters can be seen up to x = 

14 for the main cluster pattern. 
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Figure 2.  Mass spectrum of 1 mM propylamine hydrochloride in 99 % IPA, 1% H2O.  The 

cluster distribution is present up to x = 8 for the main cluster pattern.  Inset shows isotope 

peaks for (EtNH3)3Cl4
- .  The black bars indicate the calculated isotope distribution for this 

cluster ion.
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Figure 3.  CID product spectrum of the (PrNH3)3Cl4
- ion.  The parent ion fragments into 

smaller cluster ions with the next smaller cluster being the most intense.  Note that no Cl- 

ions are observed in the mass spectrum.  The first mass analyzer does not transmit all the 

isotopomers of the parent ion equally, so the product ions do not have the expected natural 

isotope distribution. 
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Figure 4.  CID product spectrum of the MeNH3Cl2

- monomer ion, which fragments into 

HCl2
- and Cl-.   
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Figure 5.  Mass spectrum of 1 mM diethylamine hydrochloride in 99 % IPA, 1 % H2O.  The 

only analyte ion present is the monomer ion of Et2NH2Cl2
- (m/z = 144).  The peak labeled 

with an asterisk is a noise spike. 
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Figure 6.  Mass spectrum of 1 mM tetrabutylammonium iodide.  The three ions present are I-, 

I3
-, and Bu4NI2

-. 
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Figure 7.  Measured cross sections for the production of HCl2

- and Cl- from MeNH3Cl2
- 

versus collision energy in center of mass frame.  The threshold energies are 2.06 and 2.22 

eV, respectively.  The collision gas pressure was 0.0267 Pa and the data were collected in 

SRM mode.  The threshold energies have been corrected by addition of the 0.76 eV 

instrumental offset, as described in the Experimental section.  Inset shows measured cross 

sections for HCl2
- and Cl- from MeNH3Cl2

- without any collision gas present in the collision 

cell.  No apparent cross section is measured.  The initial decrease is attributed to instrumental 

effects.  
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Figure 8.  Measured cross sections for the production of (MeNH3)HCl2
-, MeNH3Cl2

-, and 

HCl2
- from (MeNH3)2Cl3

-.  The threshold energies are 1.47, 1.41 and 1.24 eV, respectively.  

Inset shows an expanded view of the threshold region. 
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CHAPTER 3.  ELECTROSPRAY IONIZATION MASS SPECTROMETRY OF 

HIGHLY NEGATIVELY CHARGED ALKALI METAL SULFATE CLUSTER IONS 

 

A paper to be submitted to the Journal of the American Society for Mass Spectrometry 

N. B. Lentz, T. C. Hutcheson, and R. S. Houk 

 

Abstract 

Salt cluster ions of alkali metal sulfates Mx(SO4)y
z- (M = Li, Na, and Cs) were studied 

by electrospray ionization mass spectrometry.  Ions with charges up to z = -7, i.e., 

Na131(SO4)69
7- were present in the mass spectra.  The effects of capillary temperature, 

capillary voltage, tube lens voltage, fragmentor voltage, and various solvents were 

investigated.  Collision induced dissociation of the clusters showed that there was an overlap 

of singly and multiply charged ions at the same m/z.  Two different types of instrument 

interfaces, heated capillary and fragmentor, were utilized in this study.  The different cations 

produced different cluster distributions with lithium sulfate clusters generating the most 

multiply charged cluster ions.  The capillary voltage altered the cluster ion intensity and 

distribution more than any other parameter on the instrument with the heated capillary 

interface.  The fragmentor voltage produced the largest variation in the cluster ion 

distribution.  Overall, the heated capillary interface produced smaller changes to the cluster 

ion distribution than the fragmentor interface. 
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Introduction 

Electrospray ionization [1-4] has proved to be a significant advance in the field of 

mass spectrometry.  Over the past 15 to 20 years, cluster ions have been utilized for many 

electrospray applications.  Anacleto et al. found that protonated water clusters and salt 

clusters could be used for mass calibration in both positive and negative ion modes of 

electrospray ionization mass spectrometry (ESI-MS) [5].  Later, sodium trifluoroacetate 

cluster ions were also found to be a useful calibration standard for ESI-MS [6].   

Clusters are useful calibration standards for ESI-MS because they cover the mass to 

charge scale from around 50 m/z to 4000+ m/z.  This covers the range of quadrupole, 

quadrupole ion trap, and most linear trap mass analyzers.  This also covers a significant 

portion of a time of flight (TOF) mass analyzer’s m/z range.  Cluster ions are also closely 

spaced throughout the entire mass range, but far enough apart to allow for the identification 

of the correct peak.  These characteristics allow for an excellent mass calibration throughout 

the entire m/z range. 

Cluster ions have been used to study the electrospray ionization process.  Currently, 

there are two proposed mechanisms that explain the ESI process: the ion evaporation model 

(IEM) and the charge residue model (CRM).  The IEM was proposed by Iribarne and 

Thompson [7, 8] in the 1970’s, and the CRM initiated with the research done by Dole et al. 

[1] and further developed by Röllgen and coworkers [9, 10].   More recent research by Wang 

and Cole focused on weakly solvated ions and led to a proposed extended form CRM model 

[11, 12].  For low m/z cluster ions, Kebarle and Peschke were unable to distinguish the IEM 

and CRM models because ions supporting both models were present in the mass spectra [13].  
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Several other interesting studies utilizing cluster ions have been done to try and explain the 

IEM and CRM models [14-16]. 

Even though a lot of cluster ion research has been conducted, very little research has 

been done on multiply charged cluster ions and other fundamental areas.  In this paper, 

multiply charged cluster ions are defined as cluster ions that have two or more charges.  In 

addition, very little research has been done on collision induced dissociation of cluster ions.  

Also the effects of solvents, ESI source conditions, and the mass spectrometer interface have 

not been rigorously studied. 

A few years ago, two papers by March and coworkers sought to address many of the 

issues stated above [17, 18].  These papers looked at multiply charged clusters, solvent 

conditions, pH, and CID.  This paper expands on the cluster ions studied by March and 

coworkers by analyzing clusters in which cations and anions have different fundamental 

charges as well as using mass spectrometers with different source designs. 

 
Experimental 
 
Samples and Sample Preparation 
 

The sulfate salts (LiSO4, NaSO4, CsSO4) and organic solvents were purchased from 

Sigma (St. Louis, MO) and used without further purification.  The samples were dissolved at 

1 mM in either a H2O/MeOH or isopropanol (IPA)/H2O (Millipore 18.2 MΩ, Bedford, MA) 

solution.  The percent composition of each solvent was altered during some experiments, but 

a 50/50 H2O/MeOH solution was used unless otherwise noted.  
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ESI-MS 

A triple quadrupole (QoQ) MS (TSQ-7000, Thermo Finnigan, San Jose, CA) with an 

on-axis ESI source and heated capillary interface (stainless steel, 400 μM i.d. 114 mm long), 

was used for the majority of the experiments.  Samples were continuously infused at 5 

μL/min with a syringe pump (Model 22, Harvard Apparatus, Southnatic, MA).  Nitrogen (60 

psi) and high purity argon were used as the nebulizing gas and collision gas, respectively.  

The electrospray needle voltage was set to -3.2 to -4.0 kV, and the heated capillary was kept 

at 200 oC, -136 V.  The voltages on the ring electrode and first octopole were -85 and +3.0 V, 

respectively.  The skimmer is at ground on this instrument.  The parameters were adjusted to 

obtain a stable signal with maximum intensity over the mass range investigated.  The scan 

range was 50 to 2000 m/z.  Data were collected for 2 to 5 minutes at 2 seconds per scan.  For 

CID studies, the collision pressure was 1.0-1.5 mtorr, and the collision voltage was 20-25 eV 

(lab frame).  The resolution of the first quadrupole was reduced to increase ion transmission 

into the collision cell. 

A single quadrupole MS (6130A, Agilent Technologies, Santa Clara, CA) with an 

orthogonal ESI source was also used for some experiments as noted.  The interface geometry 

of this instrument employs a heated nitrogen counter-current gas flow, a stainless steel 

capped glass transfer capillary (600 μM i.d. 180 mm long), and a skimmer with an adjustable 

voltage.  The skimmer voltage is referred to as the fragmentor voltage.  The electrospray 

needle voltage was set to -3.5 kV, and the drying gas temperature was set to 250 oC.  

Nitrogen was used for the nebulizing gas (35 psi) and drying gas.  The scan range was 50 to 

3000 m/z.  The 1 mM samples were introduced via a high pressure liquid chromatography 

(HPLC) system (model 1200, Agilent Technologies, Santa Clara, CA) at a flow rate of 50 
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μL/min.  No column was used during the experiments.  The amount of sample injected was 

either 50 or 100 μL, which allowed for 1 or 2 minutes of data to be averaged for each mass 

spectrum. 

 

Results and Discussion 

Effect of Cation Size 

Solutions of Li2SO4, Na2SO4, and Cs2SO4 were sprayed to see if the size of the cation 

affects the cluster ion distribution in the mass spectra.  The Pauling crystal radii of Li+, Na+, 

and Cs+ are 60, 95, and 169 pm, respectively [19].  The Yatsimirskii thermochemical radius 

of SO4
2- anion is 230 pm [20].  Figure 1a-c shows the mass spectra of LiSO4, NaSO4, and 

CsSO4 cluster ion distributions.  All of the instrument conditions were kept constant between 

the three different samples.   

The Li and Na cations (Figures 1a and 1b) have similar cluster ion distributions which 

decay off in an exponential fashion with many clusters present.  In these figures, the number 

refers to the number of cations in the cluster ion, and the superscript number indicates the 

charge state.  For example the ion labeled as 7- in Figure 1b is Na7(SO4)4
-.  The same notation 

is used for the rest of the figures in this paper.  In Figure 1a, there are a lot of “background” 

peaks present above m/z 1100.  These are not background ions.  The ions are low intensity 

multiply charged lithium sulfate clusters.  This pattern is present in Figure 1b, but the peaks 

are further apart due to the larger mass of sodium compared to lithium.  This spreads out the 

ions in the mass spectrum and allows for an accurate mass assignment.  The Cs clusters, 

Figure 1c, also decay off in an exponential fashion, but with few higher charge states present.   
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Even though there are fewer Cs clusters due to the larger mass of Cs, there are few 

doubly charged ions present in the mass spectrum.  For Li and Na, there is a doubly charged 

ion present between 3- and 5- but this peak is absent in the Cs spectrum.  This shows that 

cation size plays a role in cluster ion formation.  It is surprising to note that the smaller 

cations form more clusters with the larger sulfate anion than the Cs cation, which is similar in 

size to sulfate anion.  It is possible that the smaller cations can fit into holes and spaces into 

which the larger Cs cation cannot.   

At higher m/z values, clusters representing multiple charge states are present for Li 

and Na clusters.  Figure 2a shows that charge states are present up to 5- for sodium sulfate 

cluster ions acquired on the TSQ-7000 instrument.  At higher m/z some 6- ions are also 

present.  In Figure 2b, the Agilent instrument was used to collect a mass spectrum over the 

same m/z range as in Figure 2a.  The spectra have a similar cluster ion distribution, and the 

same cluster ions are present.  Figure 2c shows the m/z 1250-1400 region of a sodium sulfate 

solution collected on the Agilent instrument.  Cluster ions with charges up to 7- are observed.  

The ion labeled as 1317- is Na131(SO4)69
7-.  There are 200 total ions stabilized by ionic 

interactions in this cluster ion.   

The ions described above were identified by comparing calculated mass to charge 

ratios to the mass to charge ratios present in the mass spectrum.  These comparisons show 

excellent agreement, within 0.5 m/z, and allow for the correct identification of the ions.  The 

presence of many different charge states indicates that there is a strong interaction between 

the sulfate anion and the Li and Na cations.  The ions must be reasonably stable in order to 

traverse the mass spectrometer, and reach the detector.  
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Effects of Instrumental Conditions on the Masses and Charge States of Cluster Ions 

TSQ-7000 

 It has been shown elsewhere that the cone voltage can drastically alter the appearance 

of cluster ions in mass spectra [15].  The TSQ-7000 instrument used in this study employs a 

heated capillary and a tube lens to direct ions into the mass spectrometer instead of a sampler 

cone.  The effects of changing the heated capillary voltage and tube lens voltage are 

discussed below.  The spectra are compared to spectra taken on an instrument that utilizes a 

sampling cone where the cone voltage is varied. 

 Figures 3a-f show the spectra at three different capillary voltages (a-c), and three 

different tube lens voltages (d-f).  The voltages cover the normal operating ranges for these 

components.  The three capillary voltages shown are 50, 137, and 150 volts.  The three tube 

lens voltages shown are 5, 60, and 100 volts.  As seen in Figures 3a-c, changing the capillary 

voltage has a significant effect on the cluster ion distribution.  At low capillary voltages, the 

spectrum has a higher number of low m/z multiply charged ions and very few ions present at 

a m/z greater than 700.  At normal to high capillary voltages (Figures 3b and 3c), some of the 

low m/z multiply charged ions are lost, but many more cluster ions with a higher m/z are 

observed.  Multiply charged clusters are present, but they have less charge so their m/z has 

shifted to a higher value.  The overall intensity of the cluster ion distribution is greater at 

higher capillary voltages.  The greatest number of singly charged clusters occurs at the 

highest capillary voltages.   

 The tube lens voltage had little effect on the cluster distribution and location of the 

multiply charged clusters.  The spectra in figures 3d-f have very similar cluster ion 

distributions, even though the tube lens is changed from 5 to 150 V.  This shows that the tube 
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lens does not cause collision induced dissociation for the ions investigated. The intensity of 

the cluster ions does change though, with the higher tube lens voltage generating a slightly 

more intense mass spectrum.  The overall function of the tube lens is to focus ions, and not 

cause ion fragmentation. 

 The capillary and tube lens voltages were also changed for lithium sulfate and cesium 

sulfate clusters.  When the capillary voltage was changed from 25 to 150 volts for lithium 

sulfate clusters, more cluster ions were present at higher m/z (data not shown).  The low m/z 

multiply charged cluster ions were present until the capillary voltage reached 150 V.  The 

intensity of the cluster ions increased as the capillary voltage increased.  This effect was also 

seen when the tube lens voltage was changed for the lithium sulfate clusters.  Increasing the 

tube lens voltage allowed for the identification of higher m/z clusters, which could not be 

seen at low tube lens voltages. 

 The results for cesium sulfate clusters were more difficult to compare since many 

fewer cluster ions are present.  As with lithium and sodium, the higher capillary voltages 

produced a more intense spectrum, but the intensity reached a maximum at 100 V (data not 

shown).  The tube lens voltage didn’t significantly affect the cesium sulfate cluster ion 

spectra.  The intensities and overall appearance of the spectra remained consistent. 

 The effect of the heated capillary temperature on the cluster ion distributions was also 

studied.  The results were similar for the different cations studied.  At low capillary 

temperatures, 125 oC, the ion transmission was very low, and few ions were seen.  The 

middle range of capillary temperatures, 150-200 oC, provided the best ion transmission and a 

wide distribution of cluster ions.  At 250 oC, the highest capillary temperature studied, the ion 

intensity remained high but the cluster ion distribution decreased in the higher m/z range 
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compared to the spectra taken at 200 oC.  Apparently the higher capillary temperature caused 

fragmentation of the large, highly charged clusters.  

 

Agilent 6130A 

 The sodium sulfate cluster ions were also analyzed using an Agilent 6130A single 

quadrupole instrument with a different interface.  As stated in the experimental section, this 

instrument interface uses a heated nitrogen counter-current gas flow, a transfer capillary, and 

a skimmer with an adjustable voltage.  The adjustable voltage on the skimmer is referred to 

as the fragmentor voltage on this instrument and is comparable to the cone voltage on other 

instruments.  The fragmentor has an adjustable range from 0 to 400 V.  The sodium sulfate 

cluster ion distribution was examined using fragmentor voltages of 50, 100, 150, 200, 250, 

300, 350, and 400 V.  This covers the entire range of the fragmentor voltage. 

 When a 1 mM sodium sulfate solution is sprayed at the different fragmentor voltages, 

significant changes in the cluster ion distribution are observed.  Figures 4a-d show the 

sodium sulfate mass spectrum at 50, 150, 250, and 400 V, respectively.  In Figure 4a, 

multiply charged cluster ions are present in the mass spectrum up to around m/z 1600.  There 

are many multiply charged cluster ions present at low m/z.  The overall abundance of the 

mass spectrum is low, and the ions are all on the low side of the m/z range.  In Figure 4b, the 

overall abundance is more than double that of Figure 4a.  The multiply charged ions have 

shifted to higher m/z values, in the range of 900-2000 m/z.  The mass range of the cluster 

ions has been extended with cluster ions present out to ~2400 m/z.   

This trend continues in Figure 4c where the multiply charged ions once again shift to 

a higher m/z range.  The multiply charged cluster ions are in the 1100-2400 m/z range.  The 
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overall abundance is three times higher than in Figure 4a.  In the lower m/z range, singly 

charged sodium sulfate cluster ions are the main ions present.  Low intensity doubly charged 

ions begin to appear at m/z 615.  This can be verified by looking at the isotope distribution of 

the low mass ions.  For example, the m/z 261 peak does not have any isotope peaks present at 

m/z 262 (data not shown).  If there was a doubly charged cluster present at the same m/z, the 

34S isotope peak would be one m/z higher than the initial peak instead of the 2 m/z higher 

observed for a singly charged cluster.  The resolution on both instruments is sufficient to 

observe a 34S isotope peak one m/z higher than the initial peak.   

In Figure 4d, there is another change in the cluster ion distribution.  There are doubly 

and triply charge cluster ions present from ~ 900-2700 m/z, but the higher multiply charged 

cluster ions are present from ~ 1700-2700 m/z.  The multiply charged ions are weak in 

intensity, and the singly charged ions are the main ions present.  Singly charged cluster ions 

are present out to 2959.5 m/z.  The intensity in Figure 4d is similar to the intensity in Figure 

4c. 

 

Effects of Solvent Conditions 

 Solvent composition also affected cluster ion distributions.  Na2SO4 was dissolved at 

1 mM in 50/50, 75/25, 25/75, and 1/99 H2O/MeOH.  A 50/50 H2O/IPA solvent mixture was 

also used.  Figures 5a-e show the cluster ion distribution effects as the solvents and solvent 

ratios are changed.  Figure 5c, 25/75 H2O/MeOH, produced the most intense cluster ion 

signal with both singly and multiply charged ions present in the mass spectrum.  The 

multiply charged clusters present below m/z 500 are much more intense than in the 50/50 

H2O/MeOH spectrum in Figure 5a.  The solvents with a higher proportion of methanol will 

 



www.manaraa.com

 
 

44 

evaporate faster than the water based solvents in the atmospheric region of the ion source.  

This favors cluster ion formation for the analytes investigated.  The 75/25 H2O/MeOH 

solution produced the least intense mass spectrum (Figure 5b).   

 The 50/50 H2O/IPA solution (Figure 5e) generated a mass spectrum with multiply 

charged clusters present throughout the whole mass spectrum.  The multiply charged clusters 

are low in intensity, but they are present at both low and high m/z.  This ion distribution is 

not present with the H2O/MeOH solutions, and thus the 50/50 H2O/IPA solution generated 

the most diverse distribution of clusters.  Under these conditions, the m/z 283 peak is the 

most intense ion in the mass spectrum.  This shows that the cluster properties change when 

IPA is used as a solvent. 

 

CID of Cluster Ions 

 CID is a powerful fragmentation tool that gives structural information, fragmentation 

pathways, as well as bond strengths within ions.  CID mass spectra were obtained on the 

TSQ-7000 instrument for some sodium sulfate cluster ions of various charge states.  The 

resolution of the first quadrupole was decreased in order to obtain better ion transmission 

through the collision cell.  The resolution was not decreased enough to transmit the 34S 

isotope of the singly charged cluster ions.  For multiply charged parent ions, both 32S and 34S 

isotopes were transmitted through Q1.  The 32S and 34S isotopes of the multiply charged 

cluster ions were both transmitted, being at least one m/z closer to the parent ion than the 

singly charged cluster ion. 

 Figure 6 shows a CID spectrum for the m/z 402.7, Na5(SO4)3
-, cluster ion.  The 

presence of the peak at m/z 544.6 indicates the presence of a doubly or multiply charged ion 
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in the peak at m/z 402.7.  The possible multiply charged ions that may be present at m/z 

402.7 are Na10(SO4)6
2-, Na15(SO4)9

3-, and Na20(SO4)12
4-.  These ions were present in the low 

m/z range of the original mass spectrum, and those with the same isotopes (e.g. all 32S and 

16O) cannot be distinguished because they have exactly the same m/z values, discounting the 

energy mass equivalent to the energy in their chemical bonds.  A high resolution instrument 

may be able to separate the isotope peaks to give insight as to which ions are present. 

A closer look at the m/z 544.6 peak shows 34S isotope peaks only two m/z from the 

base peak.  This indicates that there are not any doubly charged product ions at this m/z.  In 

order to make a doubly charged ion at 544.6, a 3- or 4- ion at m/z 402.7 would have to 

undergo CID.  This indicates that the peak at 402.7 is comprised mainly of singly and doubly 

charged ions.  The peak at m/z 260.8 also does not show any doubly charged ions present 

based on the location of the 34S isotope peak. 

 Figure 7 shows the CID spectrum of the sulfate clusters at m/z 544.6.  Here the singly 

and doubly charged cluster ions are Na7(SO4)4
- and Na14(SO4)8

2-, respectively; other possible 

cluster ions are Na21(SO4)12
3- and Na28(SO4)16

4-.  The product ions at m/z 686.7 and m/z 

828.7 indicate that there is at least a doubly charged ion, and possibly a triply charged ion 

present at m/z 544.6.  These ions are of very low intensity, but the m/z is the same as the ions 

seen in the original scan (see Figure 1b).  It is possible that a triply charged ion is present 

because there were triply charged ions identified on either side of m/z 544.6 in the scan mode 

mass spectrum.  Triply charged ions cannot be directly identified at m/z 544.6 because the 

instrument does not have sufficient resolution to separate the 3- isotope peaks from the 2- 

and 1- isotope peaks. 
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 The ions at m/z 686.7 and m/z 828.7 are from the fragmentation of a doubly charged 

parent ion.  When the singly charged m/z 828.7 ion is produced, a singly charged ion at m/z 

260.7 is also produced.  This accounts for all of the sodium and sulfate ions in the doubly 

charged m/z 544.6 ion.  The m/z 686.7 ion and some of the 402.6 ion are also produced from 

the fragmentation of a doubly charged ion at m/z 544.6.  When the singly charged ions at m/z 

544.6 undergo CID, m/z 260.7 and m/z 402.6 ions are present. 

 Figure 8 shows the CID mass spectrum of the doubly charged sodium sulfate cluster 

at m/z 331.8.  At m/z 331.8, there cannot be any singly charged cluster ions present because 

m/z 331.8 is in between the singly charged cluster ions of Na3(SO4)2
- (m/z 260.8) and 

Na5(SO4)3
- (m/z 402.8).  Few, if any, 4- ions are present based on the lack of 4- ions at 

surrounding m/z.  The formula for the m/z 331.8 cluster is Na8(SO4)5
2-.  Two product ions are 

seen at m/z 260.7 and m/z 402.6.  The product ions are singly charged because the 34S 

isotope is 2 m/z units away from the 32S isotope peak.  These two ions account for all of the 

sodium and sulfate ions in the doubly charged peak at m/z 331.8.  Since no other product 

ions are observed, it is likely that the peak at m/z 331.8 only contains the doubly charged 

cluster ion and is not a combination of 2- and 4- cluster ions.  If a 4- cluster ion was present, 

multiply charged product ions would have been present in the CID spectrum of the m/z 331.8 

ion. 

 

Conclusions 

 Instrument interface geometry has a significant influence on the appearance of sulfate 

cluster spectra.  The heated capillary/tube lens interface provides the most consistent spectra 

at different conditions for the cluster ions studied.  As seen in previous work, changing the 
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voltage on the cone/fragmentor can completely change the cluster ion distribution in the mass 

spectrum [17]. 

Based on this information, instrument geometry plays a critical role in cluster ion 

analysis.  If a wide variety of cluster ions are being analyzed, the heated capillary/tube lens 

interface offers fewer spectral changes than other instrument interface geometries.  It may be 

possible to use a general set of tune conditions and compare a wide variety of cluster ions, 

which could be useful when looking for a cluster ion to bind an ion of interest.   

On the other hand, if a specific cluster ion needs to be studied, the cone/fragmentor 

voltage could be optimized to maximize the intensity for the desired cluster ion.  This could 

be useful if a cluster ion is going to be isolated from a cluster ion distribution and used for 

another purpose, such as gas phase reactions in an ion trap or ion mobility studies. 
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1mM lithium sulfate 50 MeOH 4kV #1-91 RT: 0.00-3.03 AV: 91 SM: 7B NL: 1.69E5
T: - p ESI Q1MS [ 30.00-1600.00]
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 Figure 1.  (a) Mass spectrum of 1 mM LiSO4 in 50/50 H2O/MeOH.  The numbers above 

some peaks represent the number of Li+ cations present, while the superscript denotes the 

charge state.  (b) Mass spectrum of 1 mM NaSO4 in 50/50 H2O/MeOH.  The numbers above 

some peaks represent the number of Na+ cations present, while the superscript denotes the 

charge state.  (c) Mass spectrum of 1 mM CsSO4 in 50/50 H2O/MeOH.  The numbers above 

some peaks represent the number of Cs+ cations present, while the superscript denotes the 

charge state.  The intensity listed at the top of the figure corresponds to the most intense peak 

in the mass spectrum. 

 

 



www.manaraa.com

 
 

52 

sodium sulfate 1600 5 min #1-151 RT: 0.00-5.01 AV: 151 SM: 7B NL: 2.55E5
T: - p ESI Q1MS [ 30.00-1600.00]
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1mM cesium sulfate 50 MeOH 4kV #1-62 RT: 0.00-2.04 AV: 62 SM: 7B NL: 1.68E5
T: - p ESI Q1MS [ 30.00-1600.00]
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25 water 75 MeOH #1-152 RT: 0.00-5.04 AV: 152 SM: 7B NL: 2.87E4
T: - p ESI Q1MS [ 30.00-2000.00]
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Figure 2.  (a) Mass spectrum showing the m/z 965 – 1120 region of a 1 mM NaSO4 solution 

in 50/50 H2O/MeOH obtained on the TSQ-7000 instrument.  Mass spectra showing the (b) 

m/z 965-1120 and (c) m/z 1250-1400 regions of a 1 mM NaSO4 solution in 50/50 

H2O/MeOH obtained on the Agilent instrument.  The numbers above some peaks represent 

the number of Na+ cations present, while the superscript denotes the charge state.  Peak 

assignments are based on calculated mass to charge. 
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Na cap 50 #1-101 RT: 0.03-5.03 AV: 101 SM: 7B NL: 5.04E5
T: - p ESI Q1MS [ 30.00-2000.00]
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 Figure 3.  Effects of changing capillary and tube lens voltage on a 1 mM NaSO4 solution in 

50/50 H2O/MeOH.  The numbers above some peaks represent the number of Na+ cations 

present, while the superscript denotes the charge state.  The mass spectra capillary voltages 

are (a) 50, (b) 137 and (c) 150 V.  The mass spectra tube lens voltages are (d) 5, (e) 60 and 

(f) 100 V.  The intensity listed at the top of the figure corresponds to the most intense peak in 

the mass spectrum. 
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NaSO4 myo tune #1-101 RT: 0.00-5.01 AV: 101 SM: 7B NL: 6.14E5
T: - p ESI Q1MS [ 30.00-2000.00]
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Na cap 150 #1-101 RT: 0.03-5.03 AV: 101 SM: 7B NL: 4.70E5
T: - p ESI Q1MS [ 30.00-2000.00]
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Na tube 5 #1-101 RT: 0.03-5.03 AV: 101 SM: 7B NL: 5.24E5
T: - p ESI Q1MS [ 30.00-2000.00]
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Na tube 100 #1-100 RT: 0.03-5.02 AV: 100 SM: 7B NL: 4.77E5
T: - p ESI Q1MS [ 30.00-2000.00]
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Figure 4.  Mass spectra of a 1 mM NaSO4 solution, 50/50 H2O/MeOH, obtained with an 

Agilent single quadrupole instrument at fragmentor voltages of (a) 50, (b) 150, (c) 250 and 

(d) 400 V. 
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NaSO4 50H2O50MeOH_061129133602 #1-151 RT: 0.00-5.03 AV: 151 SM: 7B NL: 4.44E5
T: - p ESI Q1MS [ 30.00-2000.00]
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Figure 5.  Mass spectra of a 1mM NaSO4 solution in (a) 50/50 H2O/MeOH, (b) 75/25 

H2O/MeOH, (c) 25/75 H2O/MeOH, (d) 1/99 H2O/MeOH and (e) 50/50 H2O/IPA.  The 

numbers above some peaks represent the number of Na+ cations present, while the 

superscript denotes the charge state.  The intensity listed at the top of the figure corresponds 

to the most intense peak in the mass spectrum. 
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75 water 25 MeOH #1-152 RT: 0.00-5.04 AV: 152 SM: 7B NL: 2.18E5
T: - p ESI Q1MS [ 30.00-2000.00]
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1 water 99 MeOH #1-152 RT: 0.00-5.04 AV: 152 SM: 7B NL: 3.63E5
T: - p ESI Q1MS [ 30.00-2000.00]
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50 water 50 IPA #1-152 RT: 0.00-5.04 AV: 152 SM: 7B NL: 5.83E5
T: - p ESI Q1MS [ 30.00-2000.00]
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Na 1.5 mt incr reso_061115132311 #1-133 RT: 0.00-4.47 AV: 133 SM: 7B NL: 4.55E4
T: - p ESI ms2 402.70@25.00 [ 200.00-600.00]
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Figure 6.  CID product spectrum for the Na5(SO4)3
- and Na10(SO4)6

2- ions at m/z 402.7.  The 

collision energy and collision gas pressure were 25 eV and 0.20 Pa.  The resolution of the 

first quadrupole was reduced to transmit the 32S and 34S isotopes.  The inset shows the 

isotope distribution for Na7(SO4)4
-, m/z 544.6.  Except for Na3(SO4)2

- and Na7(SO4)4
-, other 

unlabeled apparent peaks are just noise spikes.
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Na 544 1.6 mt_061115141542 #1-100 RT: 0.00-5.01 AV: 100 SM: 7B NL: 3.73E4
T: - p ESI ms2 544.70@29.00 [ 200.00-850.00]
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Figure 7.  CID product spectrum for the Na7(SO4)4
- and Na14(SO4)8

2- ions at m/z 544.6.  The 

collision energy and collision gas pressure were 29 eV and 0.21 Pa.  Unlabeled peaks are just 

noise spikes.
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Na 332 1 mt #78-149 RT: 2.61-5.02 AV: 72 SM: 7B NL: 1.18E4
T: - p ESI ms2 331.60@20.00 [ 50.00-700.00]
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Figure 8.  CID product spectrum for the Na8(SO4)5
2- ion at m/z 331.8.  The collision energy 

and collision gas pressure were 20 eV and 0.13 Pa.  Unlabeled peaks are just noise spikes. 
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CHAPTER 4.  NEGATIVE ION MODE ELECTROSPRAY IONIZATION MASS 

SPECTROMETRY OF MIXED METAL CLUSTER IONS 

 

A paper to be submitted to the Journal of the American Society for Mass Spectrometry 

N. B. Lentz, T. C. Hutcheson, and R. S. Houk 

 

Abstract 

Solutions comprising two metal chloride compounds were analyzed in negative ion 

mode by electrospray ionization mass spectrometry.  Various metal clusters, MxClz
- (M = 

Ce3+, Co2+, Zn2+ or Ho3+) or CexMyClz
- (M = Co2+, Zn2+, or Ho3+) were present in the mass 

spectra.  No multiply charged ions were observed.  Lower heated capillary temperatures 

favored mixed metal cluster ions.  The abundances of the mixed metal clusters increased 

when a 50/50 isopropyl alcohol/water solution was used compared to a 96/4 isopropyl/water 

solution.  Collision induced dissociation of cerium/cobalt mixed metal clusters revealed that 

the Co2+ ion generally leaves as part of a neutral fragment, and the negatively charged 

fragment retains the Ce3+ ion. 

 

Introduction 

 Cluster ions have many interesting applications with new and novel applications 

constantly being developed.  Gas phase clusters are generally created by the laser ablation of 

solid materials.  After the discovery of the C60 buckminsterfullerene cluster, synthesizing 

clusters via laser ablation has received great interest [1].  This method requires the sample to 

be a solid, and the plumes from two ablated solids have to be mixed.  A soluble sample has to 
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have the solvent evaporated, or go through a crystallization process which can present 

difficulties.  This process is also matrix dependent because laser coupling efficiency depends 

on the type of matrix [2]. 

Electrospray ionization mass spectrometry (ESI-MS) [3-6] has established itself as 

the premier analytical technique for polymers, biological systems, organic, and inorganic 

chemistry [7-10].  Since ESI is a soft ionization technique, it has the ability to transfer or 

even create gas phase ions that are not normally seen in solution.  There is also minimal 

fragmentation which allows for the transfer of intact ions to the mass spectrometer. 

There has been an increasing interest in cluster ion research using ESI-MS over the 

last 10-15 years.  The soft ionization of ESI allows for unique cluster ions to be created in the 

source region.  ESI-MS has been used to study alkali metal [11, 12], amino acid [13, 14], 

protein/drug [15, 16], organic [9, 17], and inorganic clusters [9, 18].  Not only have cluster 

ions been studied for their unique properties, but ions like CsxIy
+ have also been used to 

calibrate the m/z scale in ESI-MS [19, 20].  Cluster ions have also provided valuable 

information regarding the ionization process of ESI [21-23]. 

March and coworkers have systematically examined how source conditions, solvents, 

and mass spectrometer interfaces affect the cluster ion distributions seen in mass spectra [24, 

25].  They found that the cluster ion distributions varied greatly under different source 

conditions [24].  In their work, they focused on clusters with metal ions from only one 

element. 

The goal of this paper is to explore the properties of mixed metal clusters and how 

various solvents, heated capillary temperatures, and interface conditions affect the cluster 

ions seen in the mass spectra.  The mixed metal clusters were made by adding various metal 
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ions to solutions of Ce3+ ions.  Metal ions with both 2+ and 3+ charge states were examined. 

Chloride anions were used to coordinate the metal ions.  Only a stoichiometric amount of 

chloride was present.  No extra chloride was added to the solutions. 

 

Experimental 

Samples and Sample Preparation 

 The chloride salts and solvents were purchased from Sigma (St. Louis, MO) and used 

without further purification.  The samples were dissolved in isopropyl alcohol (IPA)/H2O 

(Millipore 18.2 MΩ, Bedford, MA).  The water was needed to dissolve the metal chloride 

salts.  The percent composition of each solvent was altered during some experiments, but a 

96/4 IPA/H2O solution was used unless otherwise noted.  The concentration of the chloride 

salts was 1 mM. 

 

ESI-MS 

A triple quadrupole (QoQ) mass spectrometer (TSQ-7000, Thermo Finnigan, San Jose, CA) 

with an on-axis ESI source and a heated capillary interface, was used for the experiments.  

Samples were continuously infused at 5 μL/min with a syringe pump (Model 22, Harvard 

Apparatus, Southnatic, MA).  Nitrogen (60 PSI) and high purity argon were used as the 

nebulizing gas and collision gas, respectively.  The electrospray needle voltage was set to      

-2.5 kV and the heated capillary was kept at 200 oC, -136 V, for most experiments.  The 

voltages on the ring electrode (tube lens) and first octopole were -85 and +3.0 V, 

respectively.  The skimmer is at ground on this instrument.  The conditions were adjusted to 

obtain a stable signal with maximum intensity over the mass range investigated.  The scan 
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range was 50 to 2000 m/z.  Data were collected for 2 to 5 minutes at 2 seconds per scan.  For 

CID studies, the collision pressure was 1.0-1.6 mtorr, and the collision voltage was 25 eV 

(lab frame).  The resolution of the first quadrupole was reduced to increase ion transmission 

into the collision cell for CID experiments.  Nevertheless, product ions do not show all Ce 

and Cl isotope peaks corresponding to natural abundance. 

 A single quadrupole MS (6130A, Agilent Technologies, Santa Clara, CA) with an 

orthogonal ESI source was also used for some experiments as noted.  This instrument 

employs a heated nitrogen counter-current gas flow, a metal capped glass transfer capillary, 

and a skimmer with an adjustable fragmentor voltage.  The electrospray needle was set to      

-3.5 kV and the drying gas temperature was set to 250 oC.  Nitrogen was used for the 

nebulizing gas (35 psi) and for the drying gas.  The scan range was 50 to 3000 m/z.  The 1 

mM samples were introduced via a high pressure liquid chromatography (HPLC) system 

(model 12000, Agilent Technologies, Santa Clara, CA) at a flow rate of 50 μl/min.  No 

column was used for any of the experiments.  The amount of sample injected was 100 μL, 

which allowed for 2 minutes of data to be averaged for each mass spectrum. 

 

Results and Discussion 

Cerium Chloride Clusters 

The clustering capability of cerium ions with chloride was evaluated.  Figure 1 shows 

the mass spectrum of a 5 mM CeCl3 solution in 96/4 IPA/H2O.  Cerium chloride clusters are 

present throughout the whole mass range investigated.    As m/z increases, the cluster ions 

decay gradually with no magic number clusters present.  Only singly charged clusters are 

present in the mass spectrum.  The identity of the cluster ions was confirmed by comparing 
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the calculated and experimental isotope distribution.  The inset to Figure 1 shows the isotope 

distribution for the Ce3Cl10
- ion.  The black bars show the calculated isotope distribution.  

The experimental and calculated isotope distributions show excellent agreement which 

allows for accurate ion identification.  Ce7Cl22
- was the largest cerium chloride cluster ion 

present in the mass spectrum. 

At each cerium chloride cluster, there are other cluster ions present at m/z above and 

below the cluster ion.  These ions represent the substitution of a chloride with NO3
- or other 

background gas molecules/ions present in the interface region.  As the solvent evaporates 

during the ESI process, the background molecules can compete with chloride to bind to the 

cerium ions present.  The larger cerium chloride cluster ions have more substitutions from 

the background molecules.  This is probably because there are more chloride ions present, 

and therefore a greater probability for ligand substitution.  

For example, there are two oxo chloro cluster ions below Ce3Cl10
-, m/z 773.0.  The 

ions at m/z 718.9 and m/z 754.2 are Ce3OCl8
- and Ce3OCl9

-, respectively. Oxygen is present 

is the 2- charge state in Ce3Cl8
-, and present in the 1- charge state in Ce3OCl9

-. 

 

Mixed Metal Clusters: Ce3+ and Co2+

 Two metal chloride salts were added to a solution to see if cluster ions with each 

metal ion could be observed.  Three different metal chloride salts (Co2+, Ho3+, and Zn2+) 

were added along with cerium chloride to make various solutions, each with 2 metal ions.  

Figure 2 shows the mass spectrum of a 1 mM CeCl3 and 1 mM CoCl2 solution in 96/4 

IPA/H2O.  Five cluster ion distributions are present in the mass spectrum.  The first two 

distributions correspond to cerium chloride and cobalt chloride cluster ions, starting with 
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CeCl4
- and CoCl3

-.  If only a cobalt or cerium solution was sprayed, these would be the 

expected clusters.  These single metal cluster distributions are the most intense ions in the 

spectrum. 

The next two cluster ion patterns correspond to mixed metal clusters.  In the third 

distribution, one cerium ion replaces a cobalt ion, beginning with CeCoCl6
-.  As the cluster 

ions get larger, the number of cobalt and chloride ions increase, but only one cerium ion is 

present in the clusters.  Only a few clusters of this type are present in the mass spectrum.  

The largest cluster ion present in Figure 2 is CeCo3Cl10
-, m/z 670.1. 

The fourth distribution is similar to the third, but this time only one cobalt ion and 

multiple cerium ions are present in each cluster.  The first ion in this distribution is CeCoCl6
-, 

which is the starting ion as in the previous distribution.  The largest cluster ion present is m/z 

1397, which is Ce5CoCl18
-.  This cluster pattern is more prevalent than the pattern with 

multiple cobalt ions and only one cerium ion.  This indicates that Ce3+ has a stronger 

interaction with chloride than Co2+.  

The fifth cluster distribution in Figure 2 has two or more cerium and two or more 

cobalt ions present in each cluster ion.  This cluster distribution starts at m/z 786.1, 

Ce2Co2Cl11
-, and stops at m/z 1408, Ce4Co3Cl19

-.  The cluster ions in this distribution are low 

in intensity, but are intense enough to be accurately identified.  The isotope patterns are also 

consistent with these assignments. 

 

Mixed Metal Clusters: Ce3+ and Zn2+

 Cerium and zinc did not work well for mixed metal clusters.  Only CeZnCl6
-, m/z 

417.5, and Ce2ZnCl9
-, m/z 664.4 were present in the mass spectrum when a 1 mM CeCl3, 0.5 
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mM ZnCl2 solution was sprayed (data not shown).  These two ions were very low in 

intensity.  ZnCl3
- accounted for most of the Zn2+ ions present in the mass spectrum (data not 

shown).  Further studies on cerium and zinc mixed metal clusters were not conducted. 

 

Mixed Metal Clusters: Ce3+ and Ho3+

 The clustering properties of a 1mM CeCl3 and HoCl3 solution were examined.  Like 

cerium, holmium is also a 3+ lanthanide ion and so the two metals should easily make mixed 

metal clusters.  Figure 3 shows the mass spectrum with both cerium and holmium ions 

present in solution.  This spectrum was taken with the Agilent single quadrupole instrument.  

The mixed metal clusters are of equal or higher intensity than the CexCly
- and HoxCly

- 

clusters of similar m/z.  This shows that cations of similar size, Table 1, exhibit a higher 

degree of mixed metal cluster ion formation.  It is likely that the similarly sized metal ions 

allow for less strain on the overall structure.  The similarly sized cations will also have 

similar charge densities.  This allows the chloride anions to evenly distribute within the ion.  

 The cerium/holmium clusters have the same distributions as seen with the 

cerium/cobalt clusters.  The largest mixed metal ion present in Figure 3 is present at m/z 

1367, Ho4CeCl16
-.  This is the largest cluster in the pattern where there are multiple holmium 

ions, and one cerium ion present in the cluster.  Cluster ions are also present in which there 

are more than one cerium and more than one holmium ion present.  For example, the ions of 

HoCe3Cl13
- (m/z 1045) and Ho2Ce2Cl13

- (m/z 1070) are present in Figure 3. 
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Effects of Heated Capillary Temperature 

 The heated capillary temperature was systematically changed for a 1 mM 

cerium/cobalt chloride solution to determine its influence on mixed metal cluster ion 

intensity and distribution.  In Figures 4a-e, the heated capillary temperature was decreased in 

50 or 25 oC increments from 250 to 125 oC to see if the heated capillary temperature has any 

effect on the mixed metal clusters.  A heated capillary temperature of 250 oC (Figure 4a) 

produced the least intense mass spectrum.  Perhaps the ions fragment if the capillary is too 

hot.  The intensity is more than doubled when the heated capillary temperature is reduced 

from 250 to 200 oC (Figure 4b).  The mixed metal cluster peak at m/z 410.7 showed an 

increase from 12 abundance units to 20 abundance units when the heated capillary 

temperature was reduced to 200 oC (see Figures 3a and 3b).   

 This trend is continued in Figure 4c at a heated capillary temperature of 175 oC.  On 

the vertical scale, the mixed metal cluster ion intensity has increased approximately 10 more 

abundance units, and the intensity has remained the same.  The peaks between m/z 400 and 

800 increased in intensity more than the other peaks in the mass spectrum. 

 At 150 oC, Figure 4d, there is another 10 abundance unit increase in the m/z 410.7 

peak.  There was no significant change in the mass spectrum when the heated capillary 

temperature was reduced from 150 to 125 oC (Figure 4e).  In Figures 4d and 4e, the higher 

m/z clusters, both single and mixed metal, are no longer seen in the mass spectra.  It is likely 

that the interface conditions have changed and favor the formation of the lower m/z clusters 

instead of the larger m/z clusters.  The cerium chloride clusters also decrease in intensity in 

Figures 4d and 4e.  The lower heated capillary temperatures enhance the formation of the 

mixed metal clusters.  The cerium chloride cluster signal decreases because more of the 
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cerium ions are present in the mixed metal clusters.  Even at the low heated capillary 

temperatures, no doubly charged clusters were present in the mass spectra. 

 As the heated capillary temperature was decreased, the amount of free Cl- present in 

the mass spectra also decreased.  At a heated capillary temperature of 250 oC, Figure 4a, the 

abundance of the free chloride is 17 abundance units.  At a heated capillary temperature of 

125 oC, Figure 4e, the abundance of the free chloride drops to 10 abundance units.  In Figures 

4a-4e, the free chloride signal shows a consistent drop.  If the free chloride is an indication of 

the cluster ion formation, the lower heated capillary temperatures generate more cluster ions, 

thus using up more Cl-.  Since the single metal cluster signals also decreased, more mixed 

metal clusters are present at lower heated capillary temperatures. 

 

Solvent Effects 

 Different ratios of IPA and water were examined to determine the role that the solvent 

plays in mixed metal cluster ion formation.  Methanol and other solvents were not used 

because they did not generate an appreciable amount of these ions.  Figures 5a-c show the 

mass spectra of a 1 mM cerium chloride and cobalt chloride solution in 96/4, 50/50 and 

25/75 IPA/H2O, respectively.  The 96/4 IPA/H2O solution produces the most intense mass 

spectrum with twice the intensity of the other two spectra.  Figures 5b and 5c had similar 

signal intensities with 5c (25/75 IPA/H2O) being slightly more intense. 

 In Figures 5b and 5c, the mixed metal clusters are higher in abundance relative to the 

largest peak in the mass spectrum.  The additional water allows for more mixed metal 

clusters to be formed.  This could contribute to the lower intensity of the most intense peak 
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which is a cobalt chloride cluster ion.  The mixed metal clusters are similar in abundance in 

Figures 5b and 5c even though 25 percent more water is present in Figure 5c. 

 It is interesting to note the signal of the free chloride peaks.  In Figures 4a-e, the 

mixed metal clusters increased in intensity as the free chloride decreased.  In Figures 5a-c, 

both the free chloride and the mixed metal cluster peaks increased in intensity when a 50/50 

IPA/H2O solution was used.  This shows that solvent conditions affect the droplet dynamics 

in the source region.  It is also possible that the free chloride peak increased due to increased 

ionization efficiency with more water present in solution.  

 

CID of Mixed Metal Clusters 

CID studies were carried out to examine the mixed metal cluster fragmentation 

patterns.  Figure 6 shows the CID mass spectrum of the mixed metal cluster ion at m/z 410.6, 

CeCoCl6.  The proposed CID fragmentation equation for Figure 6 is as follows: 

CeCoCl6
-  CeCl4

- + CoCl2

 The species in italics are the inferred neutral products.  The only product ion present 

is CeCl4
- at m/z 281.6.  Apparently, the rest of the parent ion left as the neutral fragment 

CoCl2.  The more highly charged Ce3+ keeps the extra chloride ion instead of Co2+.  It is also 

interesting to note that no Cl- ions are seen in the CID spectrum.  All of the chloride ions 

remain coordinated with either the Ce3+ or Co2+ ion. 

Figure 7 shows the CID mass spectrum of CeCo2Cl8
- at m/z 541.8.  When this ion 

undergoes CID, three product ions are observed in the mass spectrum: CeCoCl6
-, CeCl4

-, and 

CoCl3
-.  The neutral fragments that correspond to these ions are CoCl2, 2CoCl2, and 
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CeCl3/CoCl2, respectively.  The proposed CID fragmentation equations for Figure 7 are as 

follows:  

CeCo2Cl8
-  CeCoCl6

- + CoCl2
CeCo2Cl8

-  CeCl4
- + 2CoCl2

CeCo2Cl8
-  CoCl3

- + CeCl3 + CoCl2
  (or CeCoCl5) 
 

Although the neutral products can only be inferred, the absence of a Cl- product ion 

supports these neutral fragments.  This is the smallest cluster that yields a product ion with 

only Co2+ present in the spectrum.  It is likely that ions with only Co2+ will also be present 

with larger cluster ions due to their larger size and number of Co2+ ions present.  

 

Conclusion 

Mixed metal clusters were observed through ESI-MS.  When “softer” source 

conditions were used, there was an increase in the intensity of the mixed metal cluster ions.  

This means that the mixed metal clusters are weakly associated and are subject to source 

fragmentation at normal operating conditions.  Even when “softer” source conditions are 

used, the single metal chloride cluster distributions (e.g. CeCl4
-…) were the most intense ions 

in the mass spectra.   

The expected oxidation states (Cl-, Ce3+, Ho3+, and Co2+) were the only species seen 

in the mass spectra.  If metal ions were reduced during negative ion mode ESI, the ions may 

reduce all the way to neutral ions and thus are not observed in the mass spectra.  Metals with 

more than one stable oxidation state could be used to determine the extent of metal oxidation 

during the ESI process for mixed metal clusters. 
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It would be interesting to conduct computer modeling to ascertain the structure of the 

different mixed metal cluster ions.  There are a few possible structures, and the CID data 

cannot distinguish one cluster from another because similar product ions would appear for all 

of the possible structures. 
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Table 1.  Ionic radii of Ce3+, Ho3+, and Co2+ in Ǻ [26]. 

Coordination number
Ion 4 6 8 12

Ce3+ 1.01 1.14 1.29
Co2+ 0.57 0.65 or 0.74
Ho3+ 0.90 1.02  
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5mM Ce 96 IPA 2000 #1-100 RT: 0.00-5.03 AV: 100 SM: 7B NL: 6.40E4
T: - p ESI Q1MS [ 100.00-2000.00]
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 Figure 1.  Mass spectrum of a 1 mM cerium chloride solution in 96/4 IPA/H2O.  Inset shows 

the experimental peaks and calculated isotope distribution (black bars) for Ce3Cl10
-. 
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1mM Ce and Co 96 IPA new tune_061116105011 #1-101 RT: 0.00-5.01 AV: 101 SM: 7B NL: 5.27E5
T: - p ESI Q1MS [ 30.00-2000.00]
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 Figure 2.  Mass spectrum of 1 mM cerium and cobalt chloride solution in 96/4 IPA/H2O.  

The peaks labeled with an “*” and “**” contain only Ce and Co metal ions, respectively.  

The 2y and 3y numbers denote CeCoyCl- cluster ions, and the 2z pattern denotes CezCoCl- 

cluster ions.  Note vertical scale zoom at m/z > 850.
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Figure 3.  Mass spectrum of a 1 mM cerium and holmium chloride solution in 96/4 IPA/H2O 

collected on the Agilent single quadrupole instrument. 
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1mM Ce and Co 96 IPA 2000 cap 250 #1-102 RT: 0.00-5.06 AV: 102 SM: 7B NL: 1.22E5
T: - p ESI Q1MS [ 30.00-2000.00]
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Figure 4.  Heated capillary temperature effects on a 1 mM cerium and cobalt chloride 

solution in 96/4 IPA/H2O.  The heated capillary temperatures for (a), (b), (c), (d), and (e) are 

250, 200, 175, 150, and 125 oC, respectively.  Note vertical scale zoom at m/z > 640. 

 



www.manaraa.com

 
 

86 

1mM Ce and Co cap 200 #1-102 RT: 0.00-5.06 AV: 102 SM: 7B NL: 2.68E5
T: - p ESI Q1MS [ 30.00-2000.00]
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1mM Ce and Co cap 175 #1-102 RT: 0.00-5.06 AV: 102 SM: 7B NL: 2.64E5
T: - p ESI Q1MS [ 30.00-2000.00]
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1mM Ce and Co cap 150 #1-101 RT: 0.00-5.03 AV: 101 SM: 7B NL: 2.81E5
T: - p ESI Q1MS [ 30.00-2000.00]
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1mM Ce and Co cap 125 #1-102 RT: 0.00-5.06 AV: 102 SM: 7B NL: 2.27E5
T: - p ESI Q1MS [ 30.00-2000.00]
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1mM Ce and Co 96 IPA new tune_061116105011 #1-101 RT: 0.00-5.01 AV: 101 SM: 7B NL: 5.27E5
T: - p ESI Q1MS [ 30.00-2000.00]
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Figure 5.  Solvent effects on a 1 mM cerium and cobalt chloride solution.  The solvent 

compositions are (a) 96/4 IPA/H2O, (b) 50/50 IPA/H2O, (c) 25/75 IPA/H2O.  Note vertical 

scale zoom at m/z > 900. 
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1mM Ce and Co 50 IPA new tune_061116113035 #1-102 RT: 0.00-5.06 AV: 102 SM: 7B NL: 1.99E5
T: - p ESI Q1MS [ 30.00-2000.00]
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1mM Ce and Co 25 IPA new tune_061116111958 #1-101 RT: 0.03-5.03 AV: 101 SM: 7B NL: 2.11E5
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Mixed 410 .5 mt incr reso #94-149 RT: 3.15-5.01 AV: 56 SM: 7B NL: 5.56E3
T: - p ESI ms2 410.60@25.00 [ 30.00-450.00]
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Figure 6.  CID product spectrum for the CeCoCl6
- ion at m/z 410.6.  The collision energy and 

collision gas pressure were 25 eV and 0.067 Pa, respectively.
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Mixed 541 .6 mt #1-61 RT: 0.00-2.04 AV: 61 NL: 3.51E3
T: - p ESI ms2 541.50@25.00 [ 30.00-550.00]
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Figure 7.  CID product spectrum for the CeCo2Cl8
- ion at m/z 541.8.  The collision energy 

and collision gas pressure were 25 eV and 0.067 Pa, respectively. 
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CHAPTER 5.  INTERACTION OF TOXIC METAL IONS WITH THE [Gln11]-

AMYLOID β-PROTEIN FRAGMENT (1-16) STUDIED BY ELECTROSPRAY 

IONIZATION MASS SPECTROMETRY 

 

A paper submitted to the Journal of Biological Inorganic Chemistry 

N. B. Lentz and R. S. Houk 

 

Abstract 

 Electrospray ionization mass spectrometry (ESI-MS) was used to evaluate toxic metal 

binding to the [Gln11]-amyloid β-protein fragment (1-16).  Cd and Pb bound to the amyloid 

fragment; Hg did so weakly.  Collision induced dissociation (CID) studies found that Pb and 

Cd attached to the same binding site as the essential element Zn.  Competition studies found 

that Pb and Cd have a higher affinity for the binding site than Zn.  The signal ratio (Cd + 

peptide)/(Zn + peptide) was 1.39, and the ratio (Pb + peptide)/(Zn + peptide) was 1.85.  

Cadmium and lead displaced about 80 percent of the bound Zn ions, but an excess of Zn did 

not remove the bound toxic metals. 

 

Introduction 

Some metal ions play a critical role in biological systems and are needed for many 

biological functions [1].  Not all metal ions are essential for biological systems.  Once 

present in a biomolecule, toxic metals are often hard to remove and can accumulate over 

time.  Other toxic metals can cause improper folding in proteins, cause enzymes to lose their 
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function, compete for specific binding sites with the desired metal ion, and cause many 

unknown reactions within the biological system [2].   

Many well established instrumental methods such as absorption spectroscopy, 

circular dichroism (CD) [3], nuclear magnetic resonance (NMR) spectroscopy [3,4], electron 

paramagnetic resonance (EPR) spectroscopy [3], extended x-ray absorption fine structure 

(EXAFS) [5-7], and x-ray crystallography [8, 9] have been used to study the interaction 

between metal ions and biological entities.  While these methods yield detailed structural 

information, they often are slow and require large amounts of purified protein sample. 

Since its beginning [10], electrospray ionization mass spectrometry (ESI-MS) has 

revolutionized the analysis of proteins and peptides [11, 12].  Over the past fifteen years, 

ESI-MS has become a valuable method for studying the binding of metal ions to peptides and 

proteins [13-42].  The advantages of mass spectrometry were best described by McLafferty 

as specificity, speed, and sensitivity [43].  For studying metal ion binding to peptides and 

proteins with ESI-MS, Loo added stoichiometry as another advantage of mass spectrometry 

[16].  Stoichiometry can provide accurate information regarding the number of metal ions 

associated with proteins or peptides.  The low total amounts of protein/peptide and small 

sample volumes of ESI-MS make it advantageous for studying biological materials which are 

expensive to extract or synthesize in large amounts. 

Most of the metal ion binding studies have focused on the alkali [21, 22], alkali earth 

[23-25], and the biologically essential first row transition metals [14, 15, 44, 26-42].  Very 

little mass spectrometry research has involved the investigation of toxic metal binding to 

peptides [18, 45-49].  Of these papers, only a select few have utilized ESI-MS [18, 48].   
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In this paper, the binding of toxic metals to the [Gln11]-amyloid β-protein fragment 

(1-16) is investigated using ESI-MS.  This amyloid fragment represents a wide class of 

peptides that have histidine residues at the site for metal coordination.  Information obtained 

with this peptide can be used to predict or model the behavior of other peptides that may bind 

the toxic metals studied in this paper.  As discussed by Tabet et al. [13], beta sheet formation 

of the amyloid β-protein has been implicated in triggering the onset of Alzheimer’s disease.  

In this protein, the amyloid β-protein fragment (1-16) has been identified as the smallest 

peptide able to coordinate metal ions and has been used as a model for the full protein in 

metal ion coordination studies [50].  Instead of using the whole amyloid β-protein, the 

[Gln11]-amyloid β-protein fragment (1-16) was chosen because it is commercially available 

and generates a simple mass spectrum.   

The main aim of this paper is to evaluate whether ESI-MS can determine the binding 

location and relative affinity of toxic metal ions compared to zinc ions in peptides.  CID 

studies were performed to determine the metal ion binding location(s).  Competition studies 

were performed in solution to determine the relative binding affinity of the different metal 

ions toward the peptide of interest. 

 

Materials and Methods 

Samples and Sample Preparation 

The [Gln11]-amyloid β-protein fragment (1-16), DAEFRHDSGYQVHHQK, and 

metal salts (ZnCl2, PbCl2, CdCl2, and HgCl2) were purchased from Sigma (St. Louis, MO), 

and used without further purification.  The methanol was also purchased from Sigma.  
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Samples for ESI-MS were prepared as either 5:1 or 10:1 molar ratios (metal to peptide) in 

50/50 H2O/MeOH.  The peptide concentration was kept constant at 25 μM during all 

experiments.  The solution pH was 6. 

 

ESI-MS 

A TSQ-7000 (Thermo Finnigan, San Jose, CA) was used for this study.  This triple 

quadrupole (QoQ) instrument has a heated capillary interface and an angled octopole 

collision cell.  Samples were infused at a flow rate of 4 μL/min with a syringe pump (Model 

22, Harvard Apparatus, Southnatic, MA) through a 250 μL gas-tight syringe (Hamilton, 

Reno, NV).  The electrospray needle voltage was set to 5 kV, and the heated capillary 

temperature was kept at 250 oC.  Nitrogen (60 psi) was used as the sheath gas, and high 

purity-argon was used as the collision gas.  The mass range was calibrated using a standard 

MRFA peptide/myoglobin solution in 49.5/49.5/1 H2O/MeOH/acetic acid.  The collision gas 

pressure was 0.293 Pa, and the collision energy was 30 eV, lab frame.  For CID studies, the 

resolution of the first quadrupole was reduced in order to transmit the entire multiply charged 

peak.  CID spectra were smoothed for better product ion detection. 

 

Results and Discussion 

Metal-Amyloid Complexes 

Tabet et al. [13] investigated the binding properties Zn, Ni, Mn, and Co to amyloid β-

protein fragment (1-16).  Zinc exhibited the highest binding strength when competition 

studies were performed [13].  In the current study, spectra were obtained after addition of 

125 μM ZnCl2 to the 25 μM amyloid fragment solution.  The mass spectrum in Figure 1 
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shows the 2+ to 5+ charge states of the peptide, and the Zn/peptide complexes.  Most of the 

peptide remains in the free form, but a significant amount, about 20 percent, incorporates one 

Zn2+ ion.  Other low abundance peaks represent peptide + two Zn2+ ions, and peptide + Zn2+ 

+ 2H2O.  These peaks are present for each charge state in the mass spectrum.  It is tempting 

to calculate a binding constant based on the relative signals in this spectrum, but the signal 

ratios (metal peptide/peptide) observed by ESI-MS can depend on instrument conditions, pH, 

and the type of instrument used [16].  These operating conditions are kept constant in 

subsequent experiments.  

In order to determine the Zn2+ binding location, CID was performed on the [M + Zn + 

2H]4+ ion.  The CID spectrum (Figure 2) gave the following fragment ions y2
+, y3

+, y10
2+, [y15 

+ H + Zn]4+, [a6 – H + Zn]2+, [b6 – H + Zn]2+, [a14 + Zn]3+, [b14 + Zn]3+, and [a15 + Zn]3+.  The 

nomenclature for the peptide fragmentation pattern is based on normal convention, with the 

addition of a superscript to indicate the charge state [51].  The fragment ions are consistent 

with coordination of Zn2+ to the histidine residues as previously described [13].   

Initial studies were carried out to see if Cd, Hg, and Pb would bind to the amyloid 

peptide fragment.  Each toxic metal was added at 125 μM to a different vial containing 

peptide at 25 μM.  Thus, the mole ratio toxic metal/peptide was 5:1; same as for the 

Zn2+/peptide studies above.  Thus, the mole ratio toxic metal/peptide complexes were found 

for all three toxic metals investigated (data not shown).  The intensities of the toxic 

metal/peptide complex ions were comparable to the intensities found for the Zn/peptide 

complex. 

In order to determine the binding location of toxic metals, CID studies were 

performed on the toxic metal/peptide complexes.  Cd/peptide and Pb/peptide complexes, 
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fragment similarly during CID.  Figure 3 shows the CID spectrum for the [M + Cd +2H]4+ 

ion.  In this mass spectrum, the product ions are y2
+, y3

+, y10
2+, [a6 - H + Cd]2+, [b6 - H 

+Cd]2+, [y15 + H + Cd]4+, [a14 + Cd – H2O]3+, [b14 + Cd]3+, [y9 – H +Cd]2+, and [a15 + Cd – 

H2O]3+.  Figure 4 shows the CID spectrum for the [M + Pb + 2H]4+ ion.   

Scheme 1 shows the fragmentation pattern for the [M + Cd + 2H]4+ and [M + Pb + 

2H]4+ ions.  The fragmentation pattern for the [M + Zn +2H]4+ ion is included for comparison 

purposes.  The arrows pointing left indicate abc ions, and the arrows pointing to the right 

indicate xyz ions.  The fragmentation pattern for the Cd and Pb peptides is similar to that of 

the Zn peptide.  All three metal/peptide ions have D1-A2, H6-D7, H13-H14, H14-Q15, and Q15-

K16 bond dissociations.   

Most of the bond dissociation is centered on the histidine residues for all three 

complexes.  The similar fragmentation patterns confirm that Cd and Pb are attached to the 

same binding site as Zn.  In other words, the histidine residues serve as the binding site for 

Cd and Pb as well as Zn.  This indicates the possibility that the toxic metals compete with 

zinc for the same binding site.  A strong affinity for lead and/or cadmium may have 

detrimental effects on the biological function of the protein.  In order to address this issue, 

competition studies were carried out on the peptide fragment. 

 

Competition Studies between Zn and Toxic Metals 

Equimolar amounts of Zn and each toxic metal were added simultaneously to the 

amyloid fragment solution in ratios of 5:5:1.  All solutions were equilibrated at room 

temperature overnight.  The signals of the 2+ to 4+ metal/peptide charge states were summed 
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to compare the intensities of the Zn and toxic metal bound to the peptide.  Peaks with two 

metal ions associated to the peptide were also included.   

Figure 5 shows the mass spectrum of a 5:5:1 Zn:Cd:peptide solution.  The inset 

shows a close-up view of the [M + 2H +Zn]4+ and [M + 2H +Cd]4+ ions.  The 4+ ions 

represent the most intense charge state in the mass spectrum.  The signal for the Cd peptide 

complex is higher than that for the Zn peptide complex by about 40%.  Thus, more Cd2+ ions 

occupy the active site than Zn2+ ions, if the ESI-MS sensitivity is similar for both metal 

peptide ions. 

As seen in Figure 6, the Pb peptide peak is twice as intense as the Zn peptide peak.  

The inset shows the 4+ peaks of [M + 2H +Zn]4+ and [M + 2H + Pb]4+.  Nearly twice as 

many Pb2+ ions are bound compared to Zn2+.   

Figure 7 shows the mass spectrum of a 5:5:1 Zn:Hg:peptide solution.   The peak at 

m/z 541 is a contaminant Pb peptide peak from previous samples.  The inset to Figure 7 

shows that the signal ratio Hg peptide/Zn peptide is only ~ 0.1.  Mercury does not displace 

much Zn from the metal ion binding site of the amyloid fragment.  It is possible that certain 

toxic metals preferentially interact with specific metal binding sites, or other factors 

determine toxic metal ion binding strength. 

 

Toxic Metal/Peptide Complex in the Presence of Excess Zn2+

The question of whether the toxic metals actually displace zinc already in the binding 

site is addressed next.  The free peptide peaks remain the most abundant peaks in the spectra 

(Figures 1, 5, and 6), even when 5:1 excess Cd or Pb is added.  Perhaps the toxic metals only 

interact with the excess apopeptide and do not disturb the Zn peptide complex.  If this 
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hypothesis is true, adding the toxic metal to a solution that already contains the Zn peptide 

complex would only make additional toxic metal – peptide ions and not affect the Zn 

peptide/peptide ratio.   

In order to address this issue, the study outlined in Scheme 2 was carried out.  A 1 mL 

solution of 5:1 Zn:peptide was prepared, and allowed to equilibrate overnight.  This sample is 

referred to as the Zn peptide solution.  Part of this solution, 200 μL, is transferred to another 

vial and remains the 5:1 Zn:peptide solution.  One toxic metal (Cd or Pb) is added to the 

original vial to make a 5:10:1 Zn:toxic metal:peptide solution.  This two-fold excess of toxic 

metal to zinc solution is called the Cd or Pb spike and is allowed to equilibrate overnight.  

The Cd and Pb spike solutions are then evenly divided into two vials.  To one of the vials, an 

excess of Zn is added to make a 20:10:1 Zn:toxic metal:peptide solution.  This solution is 

called the toxic metal:Zn spike.  Note that the Cd, Pb and Zn spikes are added to solutions 

whose compositions have already equilibrated, so these are replacement studies rather than 

competitions. 

Figures 8a-c show the results of this experiment for cadmium.  In the following 

discussion, only the 4+ charge state is discussed because it was the most intense charge state 

present in the mass spectra.  Figure 8a represents the 5:1 Zn:peptide solution.  This solution 

has no Cd, Pb or Hg, and a Zn peptide peak is present at about 23 percent of the apopeptide 

peak.  At the pH used in this study, much of the peptide does not bind the metal ion.  Some of 

the histidine residues at the metal binding site remain protonated and unable to bind the metal 

ions.  For the following experiments, the 23 percent value can serve as a rough guideline for 

the maximum amount of metal ions that can be bound to the peptide.  When the Cd spike is 

added (Figure 8b), the Zn peptide peak decreases by about 20 abundance units, and the Cd 
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peptide peak becomes the most abundant metal peptide peak.  Since there is a notable change 

in the Zn peptide peak, the Cd must displace some of the Zn that was bound to the peptide 

and not simply bind to some of the free peptide present.  The total amount of zinc and 

cadmium bound to the peptide is 19 percent, which is comparable to the 23 percent when 

only zinc was bound to the peptide. 

When additional zinc is added to create the 20:10:1 Zn:Cd:peptide solution (Figure 

8c), the Zn peptide peak increases to about 14 abundance units, but remains about half the 

initial value when cadmium was absent.  The intensity of the Cd peptide peak is reduced by 

four percent, but the majority of the cadmium remains bound to the peptide.  This indicates 

that a small amount of the free peptide may have bound some Zn, and that a small amount of 

the Cd may have been displaced by Zn.  The total amount of metal bound to the peptide is 

once again 23 percent, which is the same as when only the zinc ions were present in solution.  

These spectra show that a) Cd2+ has a higher affinity for the binding site because it displaces 

much of the bound Zn2+, and b) Cd2+ largely stays bound in the presence of extra Zn.   

When this experiment is performed with lead, similar results are obtained.  Table 1 

summarizes the results for the lead experiments.  Figures 9a-c show the mass spectra of the 

4+ charge states of the 5:1 Zn:peptide, 5:10:1 Zn:Pb:peptide, and 20:10:1 Zn:Pb:peptide 

complexes, respectively.  When the Pb spike is introduced (Figure 9b), the Zn peptide peak 

decreases by over 20 abundance units.  The Pb peptide peak now towers over the Zn peptide 

peak and has about the same intensity as the Cd peptide peak in Figure 8b.  The total amount 

of metal bound to the peptide is 16 percent, which is slightly lower than the original value of 

approximately 23 percent.  When the extra Zn is added (Figure 9c), the abundance for the 

lead peptide peak remains unchanged, and the Zn peptide peak increases to 12 percent.  Since 
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the amount of lead bound to the peptide remains unchanged, the excess zinc must bind to 

some of the free peptide in solution.  In Figure 9c, the total amount of metal ions bound to 

the peptide is 25 percent, which is close to the original value of 23 percent.   

Table 1 shows the relative abundances of the Zn peptide and toxic metal peptide 

peaks normalized to the [M + 4H]4+ apopeptide peak.  All of the metal peptide complex peak 

signals for all the observed charge state throughout the whole mass range investigated are 

summed in Table 1.  All of the possible metal peptide peaks are examined to account for all 

of the metal bound to the peptide. 

In contrast to Cd2+ and Pb2+, Hg2+ did not displace a significant amount of the Zn 

bound to the peptide.  Figures 10a-c show the 4+ charge states of the peptide and the 

corresponding holopeptide peaks with Hg2+ and Zn2+.  Figure 10a shows the 5:1 Zn:peptide 

solution without any Hg2+ ions present.  The peak at m/z 541 corresponds to a Pb peptide 

peak arising from Pb carryover from previous experiments with Pb2+.  When the Hg spike 

was added (Figure 10b), the Zn peptide peak remains the predominant metal peptide peak 

with a slight Hg peptide peak present at m/z 539.  The intensity of the Hg peptide peak is 

much smaller than the intensities of the Pb peptide and Cd peptide peaks.  When extra zinc is 

added (figure 10c) the Hg peptide peak is reduced to near baseline levels.  This shows that 

Hg has a much weaker binding affinity for the peptide than Zn. 

 

Conclusion 

Electrospray ionization mass spectrometry is used to probe the binding of Pb, Cd, and 

Hg to the [Gln11]-amyloid β-protein fragment (1-16).  The toxic metals primarily bind in a 

1:1 stoichiometry; a few peptides contain two metal ions.  CID studies confirm that Pb and 

 



www.manaraa.com

 
 

102 

Cd bind in the same location as Zn due to similar fragmentation patterns at the histidine 

residues.  Competition studies show that Pb2+ and Cd2+ ions have a higher affinity for the 

amyloid binding site than the zinc ions.  The amount of Pb and Cd bound to the amyloid 

fragment remains consistent, even in the presence of a two fold excess of Zn.  The peptide 

binds Hg2+ much less extensively than Zn2+.  Unlike Pb and Cd, zinc was able to displace the 

Hg ions that were bound to the amyloid peptide.  Tabet [13] found that Zn2+ bound to the 

amyloid peptide more strongly than several other first row transition metals.  We find that 

Cd2+ and Pb2+ bind more strongly than Zn2+.  Lead binds the peptide more extensively than 

cadmium, because none of the lead bound to the peptide was displaced by excess zinc 

whereas cadmium showed a slight decrease in the amount bound to the peptide (see figures 

8c and 9c). 

A variety of additional studies could be carried out to address the implications of the 

toxic metal binding to the amyloid fragment.  Circular dichroism (CD) studies would provide 

valuable information regarding the conformation of the Pb peptide and Cd peptide 

complexes.  These results could be compared to the Zn/peptide CD information to show if 

the amyloid fragment maintains the same folded confirmation with Cd and Pb in the binding 

site.  Ion mobility studies could also be used to evaluate the gas phase conformations and 

these could be compared to solution conformations.  The binding of toxic metals to other 

peptides and proteins should be examined by ESI-MS to see if there is a pattern.  These 

studies are currently underway in our lab. 

 

 

 

 



www.manaraa.com

 
 

103 

Acknowledgments 

Ames Laboratory is operated by Iowa State University for the U.S. Department of 

Energy, contract no. W-7405-Eng-82.  This work was supported by the Chemical and 

Biological Sciences Program, Office of Basic Energy Sciences, Division of Chemical 

Sciences.  The authors thank L. Huang and Bayer Company for donating the triple 

quadrupole instrument. 

 

References 

1. Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry John Wiley & Sons: 

New York, NY, 1999. 

2. Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry University Science 

Books: Mill Valley, CA, 1994. 

3. Riordan, J. F.; Vallee, B. L., Eds. Metallobiochemistry, Part D, Physical and 

Spectroscopic Methods for Probing Metal Ion Environments in Metalloproteins. 

1993, 227. 

4. Bertini, L; Turano, P.; Villa, A. J. Nuclear Magnetic Resonance of Paramagnetic 

Metalloproteins. Chem. Rev. 1993, 93, 2833-2932. 

5. Dent, A. J.; Beyersmann, C.; Block, C.; Hasnain, S. S. Two Different Zinc Sites in 

Bovine 5-Aminolevulinate Dehydraase Distinguished by Extended X-ray Absorption 

Fine Structure. Biochemistry. 1990, 29, 7822-7828. 

6. Eggers-Borkenstein, P.; Priggemeyer, S.; Krebs, B.; Henkel, G.; Simmonis, U.; 

Pettifer, R. F.; Nolting, H.-F.; Hermes, C. Extended X-ray Absorption Fine Structure 

 



www.manaraa.com

 
 

104 

(EXAFS) Investigations of Model Compounds for Zinc Enzymes. Eur. J. Biochem. 

1989, 186, 667-675. 

7. Hubbard, S. R.; Bishop, W. R.; Kirschmeier, P.; George, S. J.; Cramer, S. P.; 

Henrickson, W. A. Identification and Characterization of Zinc Binding Sites in 

Protein Kinase C. Science. 1991, 254, 1776-1779. 

8. Krebs, J. F.; Fierke, C. A.; Alexander, Richard S.; Christianson, David W. 

Conformational Mobility of His-64 in the Thr-200 .fwdarw. Ser Mutant of Human 

Carbonic Anhydrase II. Biochemistry. 1991, 30, 9153-9160. 

9. Vallee, B. L.; Auld, D. S. Active-Site Zinc Ligands and Activated H O of Zinc 

Enzymes

2

. Proc. Natl. Acad. Sci. USA. 1990, 87, 220-224. 

10. Yamashita, M.; Fenn J. B. Electrospray ion source. Another variation on the Free-Jet 

Theme. J. Phys. Chem. 1984, 88, 4451-4459. 

11. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray 

Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64-71. 

12. Cole, R. B. Electrospray Ionization Mass Spectrometry John Wiley & Sons: New 

York, NY, 1997; pp 385-419. 

13. Zirah, S.; Rebuffat, S.; Kozin, S. A.; Debey, P.; Fournier, F.; Lesage, D.; Tabet, J.-C. 

Zinc Binding Properties of the Amyloid Fragment Aβ(1–16) Studied by Electrospray-

Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2003, 228, 999-1016. 

14. Loo, J. A.; Hu, P.; Smith, R. D. Interaction of Angiotensin Peptides and Zinc Metal 

Ions Probed by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass 

Spectrom. 1994, 5, 959-965. 

 

http://www.jstor.org/view/00368075/di002172/00p0134g/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor
http://www.jstor.org/view/00368075/di002172/00p0134g/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor
http://www.jstor.org/view/00278424/di993902/99p0049k/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor
http://www.jstor.org/view/00278424/di993902/99p0049k/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor
http://www.jstor.org/view/00278424/di993902/99p0049k/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor
http://www.jstor.org/view/00278424/di993902/99p0049k/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor
http://www.jstor.org/view/00368075/ap003657/00a00230/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor
http://www.jstor.org/view/00368075/ap003657/00a00230/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor


www.manaraa.com

 
 

105 

15. Loo, J. A.; Hu, P. Gas-Phase Coordination Properties of Zn2+, Cu2+, Ni2+, and Co2+ 

with Histidine-Containing Peptides. J. Am. Chem. Soc. 1995, 117, 11314-11319. 

16. Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass 

Spectrometry. Mass Spectrom. Rev. 1997, 16, 1-23. 

17. Loo, J. A. Electrospray Ionization Mass Spectrometry: A Technology for Studying 

Noncovalent Macromolecular Complexes. Int. J. Mass Spectrom. 2000, 200, 175. 

18. Boysen, R. I.; Hearn, M. T. W. The Metal Binding Properties of the CCCH Motif of 

the 50S Ribosomal Protein L36 from Thermus thermophilus. J. Peptide Res. 2001, 

57, 19-28. 

19. Sinz, A.; Jin, A. J; Zschörnig, O.  Evaluation of the Metal Binding Properties of a 

Histidine-Rich Fusogenic Peptide by Electrospray Ionization Fourier Transform Ion 

Cyclotron Resonance Mass Spectrometry. J. Mass Spectrom. 2003, 38, 1150-1159. 

20. Ho, Y.-P.; Li, H.-P.; Lu, L.-C. Probing the Interactions of Oxidized Insulin Chain A 

and Metal Ions using Electrospray Ionization Mass Spectrometry. Int. J. Mass 

Spectrom. 2003, 227, 97-109. 

21. Kanai, M; Iida, A.; Nagaoka, Y.; Wada, S.; Fujita, T. Fungal metabolites. XXI.1 

Characteristics of Low Energy Collision Induced Dissociation of [M + 2H]2+, [M + H 

+ Na]2+ and [M + 2Na]2+ of Peptaibols using Electrospray Ionization Mass 

spectrometry J. Mass Spectrom. 1996, 31, 177-183. 

22. Ngoka, L. C. M.; Gross, M. L. Location of Alkali Metal Binding Sites in Endothelin 

A Selective Receptor Antagonists, cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) and cyclo(D-

Trp-D-Asp-Pro-D-Ile-Leu), from Multistep Collisionally Activated decompositions. J. 

Mass Spectrom. 2000, 35, 265-276. 

 



www.manaraa.com

 
 

106 

23. Veenstra, T. D.; Johnson, K. L.; Tomlinson, A. J.; Kumar, R.; Naylor, S. Correlation 

of Fluorescence and Circular Dichroism Spectroscopy with Electrospray Ionization 

Mass Spectrometry in the Determination of Tertiary Conformational Changes in 

Calcium-Binding Proteins. Rapid Commun. Mass Spectrom. 1998, 12, 613-619. 

24. Halgand, F.; Dumas, R.; Biou, V.; Andrieu, J. P.; Thomazeau, K.; Gagnon, J.; Douce, 

R.; Forest, E. Characterization of the Conformational Changes of Acetohydroxy Acid 

Isomeroreductase Induced by the Binding of Mg  Ions, NADPH, and a Competitive 

Inhibitor.

2+

 Biochemistry 1999, 38, 6025-6034. 

25. Nemirovskiy, O. V.; Gross, M. L. Determination of Calcium Binding Sites in Gas-

Phase Small Peptides by Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 

1998, 9, 1020-1028. 

26. Surovoy, A.; Waidelich, D.; Jung, G. Nucleocapsid protein of HIV-1 and its Zn2+ 

Complex Formation Analysis with Electrospray Mass Spectrometry. FEBS Lett. 

1992, 311, 259-262. 

27. Reiter, A.; Adams, J.; Zhao, H. Intrinsic (Gas-Phase) Binding of Co2+ and Ni2+ by 

Peptides: A Direct Reflection of Aqueous-Phase Chemistry. J. Am. Chem. Soc. 1994, 

116, 7827-7838. 

28. Sullards, M. C.; Adams, J. On the use of Scans at a Constant ratio of B/E for studying 

Decompositions of Peptide Metal(II)-Ion Complexes Formed by Electrospray 

Ionization. J. Am. Soc. Mass Spectrom. 1995, 6, 608-610. 

29. Witkowska, H. E.; Shackelton, C. H. L.; Dahlman-Wright, K; Kim, J. Y.; Gustafsson, 

J. A. Mass Spectrometric Analysis of a Native Zinc-Finger Structure: The 

 



www.manaraa.com

 
 

107 

Glucocorticoid Receptor DNA Binding Domain. J. Am. Chem. Soc. 1995, 117, 3319-

3324. 

30. Gadhavi, P. L. An Electrospray Ionisation Mass Spectrometry (ESI-MS) Study to 

Probe the Metal Ion Binding Site in the DNA Binding Domain of the Yeast 

Transcriptional Activator GAL4. FEBS Lett. 1997, 417, 145-149. 

31. Fabris, D.; Hathout, Y.; Fenselau, C. Investigation of Zinc Chelation in Zinc-Finger 

Arrays by Electrospray Mass Spectrometry. Inorg. Chem. 1999, 38, 1322-1325. 

32. Volz, J.; Bosch, F. U.; Wunderlin, M.; Schuhmacher, M.; Melchers, K.; Bensch, K.; 

Steinhilber, W.; Schäfer, K. P.; Tóth, G.; Penke, B.; Przybylski, M. Molecular 

Characterization of Metal-Binding Polypeptide Domains by Electrospray Ionization 

Mass Spectrometry and Metal Chelate Affinity Chromatography. J. Chromatogr. A 

1998, 800, 29-37. 

33. Nemirovskiy, O. V.; Gross, M. L. Gas Phase Studies of the Interactions of Fe2+ with 

Cysteine-Containing Peptides. J. Am. Soc. Mass Spectrom. 1998, 9, 1285-1292. 

34. Guy, P. A.; Anderegg, R. J.; Lim, A.; Saderholm, M. J.; Yan, Y.; Erickson, B. W. 

Metal-Ion Binding and Limited Proteolysis of Betabellin 15D, a Designed Beta-

Sandwich Protein. J. Am. Soc. Mass Spectrom. 1999, 10, 969-974. 

35. Whittal, R. M.; Ball, H. L.; Cohen, F. E.; Burlingame, A. L.; Prusiner, S. B.; Baldwin, 

M. A. Copper Binding to Octarepeat Peptides of the Prion Protein Monitored by Mass 

Spectrometry. Protein Sci. 2000, 9, 332-343. 

36. Lippincott, J.; Fattor, T. J.; Lemon, D. D.; Apostol, I. Application of Native-State 

Electrospray Mass Spectrometry to Identify Zinc-Binding Sites on Engineered 

Hemoglobin. Anal. Biochem. 2000, 284, 247-255. 

 



www.manaraa.com

 
 

108 

37. Morris, L. A.; Jaspars, M.; Kettenes-van den Bosch, J. J.; Versluis, K.; Heck, A. J. R.; 

Kelly, S. M.; Price, N. C. Metal Binding of Lissoclinum patella Metabolites. Part 1: 

Patellamides A, C and Ulithiacyclamide A. Tetrahedron 2001, 57, 3185-3197. 

38. Payne, A. H.; Glish, G. L. Gas-Phase Ion/Ion Interactions Between Peptides or 

Proteins and Iron Ions in a Quadrupole Ion Trap. Int. J. Mass Spectrom. 2001, 204, 

47-54. 

39. Craig, T. A.; Benson, L. M.; Naylor, S.; Kumar, R. Modulation Effects of Zinc on the 

Formation of Vitamin D Receptor and Retinoid X Receptor -DNA Transcription 

Complexes: Analysis by Microelectrospray Mass Spectrometry. Rapid Commun. 

Mass Spectrom. 2001, 15, 1011-1016. 

40. Loo, J. A. Probing Protein–Metal Ion Interactions by Electrospray Ionization Mass 

Spectrometry: enolase and nucleocapsid protein. Int. J. Mass Spectrom. 2001, 204, 

113-123. 

41. Vachet, R. W.; Hartman, J. R.; Gertner, J. W.; Callahan, J. H. Investigation of Metal 

Complex Coordination Structure using Collision-Induced Dissociation and Ion–

Molecule Reactions in a Quadrupole Ion Trap Mass Spectrometer. Int. J. Mass 

Spectrom. 2001, 204, 101-112. 

42. Afonso, C.; Hathout, Y.; Fenselau, C. Qualitative Characterization of Biomolecular 

Zinc Complexes by Collisionally Induced Dissociation. J. Mass Spectrom. 2002, 37, 

755-759. 

43. McLafferty, F. W. Tandem Mass Spectrometry. Science 1981, 214, 280-287. 

 

http://www.jstor.org/view/00368075/ap993249/99a00110/0?frame=noframe&userID=939b1529@iastate.edu/01cc99333c00501c39288&dpi=3&config=jstor


www.manaraa.com

 
 

109 

44. Brewer, D.; Lajoie, G. Evaluation of the Metal Binding Properties of the Histidine-

Rich Antimicrobial Peptides Histatin 3 and 5 by Electrospray Ionization Mass 

Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 1736-1745. 

45. Razmiafshari, M.; Kao, J.; d’Avignon, A.; Zawia, N. H. NMR Identification of Heavy 

Metal-Binding Sites in a Synthetic Zinc Finger Peptide: Toxicological Implications 

for the Interactions of Xenobiotic Metals with Zinc Finger Proteins.  Toxicology and 

Applied Pharmacology, 2001, 172, 1-10. 

46. Razmiafshari, M.; Zawia, N. H. Utilization of a Synthetic Peptide as a Tool to Study 

the Interaction of Heavy Metals with the Zinc Finger Domain of Proteins Critical for 

Gene Expression in the Developing Brain. Toxicology and Applied Pharmacology, 

2000, 166, 1-12. 

47. Asmuss, M.; Mullenders, L. H. F.; Eker, A.; Hartwig, A. Differential Effects of Toxic 

Metal Compounds on the Activities of Fpg and XPA, Two Zinc Finger Proteins 

Involved in DNA Repair. Carcinogenesis. 2000, 21, 2097-2104. 

48. Burford, N.; Eelman, M. D.; Groom, K. Identification of Complexes Containing 

Glutathione with As(III), Sb(III), Cd(II), Hg(II), Tl(I), Pb(II) or Bi(III) by 

Electrospray Ionization Mass Spectrometry. J. Inorg. Biochem. 2005, 99, 1992-1997. 

49. Hartwig, A. Recent advances in metal carcinogenicity. Pure Appl Chem. 2000, 72, 

1007-1014. 

50. Kozin, S. A.; Zirah, S.; Rebuffat, S.; Hui Bon Hoa, G.; Debey, P. Zinc Binding to 

Alzheimers Aβ(1-16) Peptide Results in Stable Soluble Complex. Biochem. Biophys. 

Res. Commun. 2001, 959-964. 

51. Biemann, K. Biomed. Environ. Mass Spectrom. 1988, 16, 99-111. 

 



www.manaraa.com

 
 

110 

Table 1.  Relative intensities of the metal peptide complex ions from amyloid peptide 

solutions spiked with various metal ions.  The intensities are averaged over all charge states 

in the mass spectra.  The solutions were prepared sequentially in the order shown.  See text 

and Scheme 2.  

 
 
 
Sample        Mole ratios  Ion Signal Ratios 
peptide/Zn peptide Cd     Zn peptide  Zn peptide/peptide Cd peptide/peptide Cd 
 
Zn + peptide         0      5     1  0.23   -   - 
 
Zn + peptide       10      5     1  0.06   0.13            2.25 
+ Cd spike 
 
Zn + peptide       10     20     1  0.14   0.09            0.67 
+ Cd spike 
+ Zn spike 
 
 
Sample                   Mole ratios            Ion Signal Ratios 
peptide/Zn peptide Pb     Zn peptide            Zn peptide/peptide Pb peptide/peptide Pb 
 
Zn + peptide         0      5     1  0.23   -   - 
 
Zn + peptide       10      5     1  0.04   0.12            2.84 
+ Pb spike 
 
Zn + peptide       10     20     1  0.12   0.13            1.06 
+ Pb spike 
+ Zn spike
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25 micro amyloid 5 to 1 Zn #1-62 RT: 0.00-2.04 AV: 62 NL: 7.85E6
T: + p ESI Q1MS [ 200.00-1200.00]
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Figure 1.  Mass spectrum of 25 μM [Gln11]-amyloid β-protein fragment (1-16) in the 

presence of 125 μM ZnCl2.  The solvent was 50/50 H2O/MeOH at a solution pH of 6.  

Symbols represent the [M + 2Zn]4+ (diamond), and the [M + 2Zn – H]3+ (triangle) ions. 
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25 amyloid 10 to 1 Zn cid 2.2 mtorr #1-50 RT: 0.00-2.47 AV: 50 SM: 7B NL: 9.70E4
T: + p ESI ms2 505.00@30.00 [ 200.00-900.00]
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*

Figure 2.  ESI-CID mass spectrum of the [M + Zn + 2H]4+ ion of the [Gln11]-amyloid β-

protein fragment (1-16).  The collision energy was 30 eV, lab frame, and the collision gas 

pressure was 0.293 Pa (argon collision gas).  Features marked with an “*” are noise spikes. 
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25 amyloid 10 to 1 Cd cid 2.2 mtorr_051020135527 #1-101 RT: 0.00-5.05 AV: 101 SM: 7B NL: 2.32E5
T: + p ESI ms2 517.00@30.00 [ 200.00-900.00]
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Figure 3.  CID mass spectrum of the [M + Cd + 2H]4+ ion of the [Gln11]-amyloid β-protein 

fragment (1-16).  The collision energy was 30 eV, and the collision gas pressure was 0.293 

Pa. 
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25 amyloid 10 to 1 Pb cid 2.2 mtorr #6-61 RT: 0.17-2.04 AV: 56 SM: 7B NL: 1.49E5
T: + p ESI ms2 541.00@30.00 [ 200.00-900.00]
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Figure 4.  CID mass spectrum of the [M + Pb + 2H]4+ ion of the [Gln11]-amyloid β-protein 

fragment (1-16).  The collision energy was 30 eV, and the collision gas pressure was 0.293 

Pa.  Features marked with an “*” are noise spikes. 
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25 micro amyloid 5 to 5 to 1 ZnCd_050915133115 #1-62 RT: 0.00-2.04 AV: 62 NL: 5.19E5
T: + p ESI Q1MS [ 200.00-1200.00]
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Figure 5.  Mass spectrum of the [Gln11]-amyloid β-protein fragment (1-16) in the presence of 

5 Zn2+ and 5 Cd2+ equivalents.  The inset shows the [M + Zn + 2H]4+ and the [M + Cd + 

2H]4+ ions. 
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25 micro amyloid 5 to 5 to 1 ZnPb_050915134238 #1-62 RT: 0.00-2.04 AV: 62 NL: 5.11E5
T: + p ESI Q1MS [ 200.00-1200.00]
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Figure 6.  Mass spectrum of the [Gln11]-amyloid β-protein fragment (1-16) in the presence of 

5 Zn2+ and 5 Pb2+ equivalents.  The inset shows the [M + Zn + 2H]4+ and the [M + Pb + 

2H]4+ ions. 
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25 micro amyloid 5 to 5 to 1 HgZn #1-62 RT: 0.00-2.04 AV: 62 NL: 6.90E6
T: + p ESI Q1MS [ 200.00-1200.00]
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Figure 7.  Mass spectrum of the [Gln11]-amyloid β-protein fragment (1-16) in the presence of 

5 Zn2+ and 5 Hg2+ equivalents.  The inset shows the [M + Zn + 2H]4+ and the [M + Hg + 

2H]4+ ions. 

 



www.manaraa.com

 
 

118 
T: + p ESI Q1MS [ 200.00 1200.00]
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Figure 8.  Replacement experiment with Cd.  (a) Mass spectrum of the [M + 4H]4+ and [M + 

Zn + 2H]4+ ions of a 25 μM [Gln11]-amyloid β-protein fragment (1-16) in the presence of 5 

Zn2+ equivalents.  (b) Mass spectrum of the [M + 4H]4+, [M + Zn + 2H]4+, and [M + Cd + 

2H]4+ ions.  The solution ratios are 5:10:1 Zn:Cd:amyloid peptide.  (c) Mass spectrum of the 

[M + 4H]4+, [M + Zn + 2H]4+, and [M + Cd + 2H]4+ ions.  The diamond and triangle 

represent the [M + Zn + 2H2O +2H]4+ and [M + 2Zn]4+ ions, respectively.  The solution 

ratios are 20:10:1 Zn:Cd:amyloid peptide. 
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25 micro amyloid 10 to 5 to 1 Cd to Zn #1-62 RT: 0.00-2.04 AV: 62 NL: 6.25E6
T: + p ESI Q1MS [ 200.00-1200.00]

480 485 490 495 500 505 510 515 520 525 530
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e 
A

bu
nd

an
ce

489.5

517.2

505.0

[M + 4H]4+

[M + Zn + 2H]4+

[M + Cd + 2H]4+

(b)

 

25 micro amyloid 10 to 20 to 1 Cd to Zn #1-61 RT: 0.00-2.01 AV: 61 NL: 1.82E6
T: + p ESI Q1MS [ 200.00-1200.00]

480 485 490 495 500 505 510 515 520 525
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e 
Ab

un
da

nc
e

489.5

505.4504.8
516.9 517.5

514.6513.9 520.7506.5

[M + 4H]4+

[M + Zn + 2H]4+ [M + Cd + 2H]4+

(c)

 



www.manaraa.com

 
 

120 
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Figure 9.  Replacement experiment with Pb.  (a) Mass spectrum of the [M + 4H]4+ and [M + 

Zn + 2H]4+ ions of a 25 μM [Gln11]-amyloid β-protein fragment (1-16) in the presence of 5 

Zn2+ equivalents.  (b) Mass spectrum of the [M + 4H]4+, [M + Zn + 2H]4+, and [M + Pb + 

2H]4+ ions.  The solution ratios are 5:10:1 Zn:Pb:amyloid peptide.  (c) Mass spectrum of the 

[M + 4H]4+, [M + Zn + 2H]4+, and [M + Pb + 2H]4+ ions.  The solution ratios are 20:10:1 

Zn:Pb:amyloid peptide. 
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25 micro amyloid 5 to 1 Zn 5min #1-101 RT: 0.00-5.02 AV: 101 NL: 4.23E6
T: + p ESI Q1MS [ 200.00-1200.00]
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Figure 10.  Replacement experiment with Hg.  (a) Mass spectrum of the [M + 4H]4+ and [M 

+ Zn + 2H]4+ ions of a 25 μM [Gln11]-amyloid β-protein fragment (1-16) in the presence of 5 

Zn2+ equivalents.  (b) Mass spectrum of the [M + 4H]4+, [M + Zn + 2H]4+, and [M + Hg + 

2H]4+ ions.  The solution ratios are 5:10:1 Zn:Hg:amyloid peptide.  (c) Mass spectrum of the 

[M + 4H]4+, [M + Zn + 2H]4+, and [M + Hg + 2H]4+ ions.  The solution ratios are 20:10:1 

Zn:Hg:amyloid peptide. 
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D A E F R H D S G Y Q V H H Q K

D A E F R H D S G Y Q V H H Q K

D A E F R H D S G Y Q V H H Q K

Zn

Pb

Cd

Scheme 1.  CID fragmentation patterns for the Zn, Pb, and Cd metal:amyloid complexes.  

Arrows pointing to the left indicate abc ions, while arrows pointing to the right indicate xyz 

ions. 
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Scheme 2.  Experimental flow chart for the replacement experiment. 
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CHAPTER 6.  GENERAL CONCLUSIONS 

 

This dissertation focused on using electrospray ionization mass spectrometry to study 

cluster ions and toxic metal ions in biology.  In Chapter 2, it was shown that primary, 

secondary and quaternary amines exhibit different clustering characteristics under identical 

instrument conditions.  Carbon chain length also played a role in cluster ion formation.  In 

Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on 

cluster ion formation were examined.  It was found that instrument interface design also 

plays a critical role in the cluster ion distribution seen in the mass spectrum.  In Chapter 5, 

ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein 

fragment (1-16).  Pb and Cd bound stronger than Zn, even in the presence of excess Zn.  Hg 

bound weaker than Zn. 

 There are endless options for future work on cluster ions.  Any molecule that is 

poorly ionized in positive ion mode can potentially show an increase in ionization efficiency 

if an appropriate anion is used to produce a net negative charge.  It is possible that drug 

protein or drug/DNA complexes can also be stabilized by adding counter-ions.  This would 

preserve the solution characteristics of the complex in the gas phase.  Once in the gas phase, 

CID could determine the drug binding location on the biomolecule. 

 There are many research projects regarding toxic metals in biology that have yet to be 

investigated or even discovered.  This is an area of research with an almost endless future 

because of the changing dynamics of biological systems.  What is deemed safe today may 

show toxic effects in the future.  Evolutionary changes in protein structures may render them 

more susceptible to toxic metal binding.  As the understanding of toxicity evolves, so does 

 



www.manaraa.com

 
 

127 

the demand for new toxic metal research.  New instrumentation designs and software make it 

possible to perform research that could not be done in the past.  What was undetectable 

yesterday will become routine tomorrow. 

 



www.manaraa.com

 
 

128 

ACKNOWLEDGEMENTS 

 

 This work was performed at Ames Laboratory under Contract No. W-7405-Eng-82 

with the U.S. Department of Energy.  This work was funded by the Chemical and Biological 

Sciences Program, Office of Basic Energy Sciences, Division of Chemical Sciences.  I would 

like to thank L. Huang and Bayer Company for donating the TSQ-7000 triple quadrupole 

instrument and Agilent Technologies for the loan of their instrument. 

 The research that led to the composition of this manuscript could have not been done 

without the guidance, knowledge and support of Professor R. S. Houk.  It was truly a 

privilege and honor to work in the Houk group.  I also enjoyed the fishing outings which 

often provided a much needed relief from the regular graduate school schedule.  I enjoyed the 

camaraderie of past and present Houk group members, and look forward to staying in contact 

with all of you.  I was honored to be awarded the Procter & Gamble Fellowship in Analytical 

Chemistry and an Iowa State University Teaching Excellence Award for the 2005-2006 

academic year.  I would to thank Procter & Gamble and Iowa State University for the 

awards, and their commitment to scientific research. 

 Last, but not least I would like to thank the people in my life that encouraged me to 

achieve a dream of mine.  I would like to thank my parents for their lifelong support and 

allowing me to pursue my dreams and goals.  I would like to thank my wife, Rebecca, for her 

encouragement and understanding of a graduate student’s unpredictable schedule.  I would 

also like to thank my wife’s parents for their enthusiasm towards my research. 

 


	2007
	Electrospray ionization mass spectrometry: from cluster ions to toxic metal ions in biology
	Nicholas B. Lentz
	Recommended Citation


	Title page.doc
	TABLE OF CONTENTS.doc
	all chapters.doc

